# #import some lib # import numpy as np # linear algebra # import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # import matplotlib.pyplot as plt # import seaborn as sns # # color = sns.color_palette() # # %matplotlib inline # pd.options.mode.chained_assignment = None# default='warn' # order_products_prior_df = pd.read_csv("../docs/keyword.csv") # # aisles_df = pd.read_csv("../input/aisles.csv") # # departments_df = pd.read_csv("../input/departments.csv") # # order_products_prior_df = pd.merge(products_df, aisles_df, on='aisle_id', how='left') # # order_products_prior_df = pd.merge(order_products_prior_df, departments_df, on='department_id', how='left') # order_products_prior_df.head() # # import matplotlib # import squarify # # temp = order_products_prior_df[['keyword','Avg_monthly_searches']] # temp = pd.concat([ # order_products_prior_df.groupby('keyword')['Avg_monthly_searches'].nunique().rename('Avg_monthly_searches') # # order_products_prior_df.groupby('department')['aisle'].nunique().rename('aisle_department') # ], axis=1).reset_index() # temp = temp.set_index('keyword') # temp2 = temp.sort_values(by="Avg_monthly_searches", ascending=False) # # # TreeMap parameters # x = 0. # y = 0. # width = 100. # height = 100. # cmap = matplotlib.cm.viridis # # # color scale on the population # # min and max values without Pau # mini, maxi = temp2.products_department.min(), temp2.products_department.max() # norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi) # colors = [cmap(norm(value)) for value in temp2.products_department] # colors[1] = "#FBFCFE" # # # labels for squares # labels = ["%s/n%d search num keyword num" % (label) # for label in zip(temp2.index, temp2.Avg_monthly_searches)] # # # make plot # fig = plt.figure(figsize=(12, 10)) # fig.suptitle("search keyword", fontsize=20) # ax = fig.add_subplot(111, aspect="equal") # ax = squarify.plot(temp2.Avg_monthly_searches, color=colors, label=labels, ax=ax, alpha=.7) # ax.set_xticks([]) # ax.set_yticks([]) # # color bar # # create dummy invisible image with a color map # img = plt.imshow([temp2.Avg_monthly_searches], cmap=cmap) # img.set_visible(False) # fig.colorbar(img, orientation="vertical", shrink=.96) # fig.text(.76, .9, "numbers of products", fontsize=14) # fig.text(.5, 0.1, # "powered by CJ /n keyword totale %d" % (temp2.Avg_monthly_searches.sum()), fontsize=14, ha="center") # fig.text(.5, 0.07, # "Source : http://netfly", # fontsize=14, # ha="center") # plt.show() import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Taipei Sans TC Beta'] sales = [100, 80, 50] x_labels = ['A品牌', 'B品牌', 'C品牌'] plt.bar(x_labels, sales) plt.show()