{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 疑問\n", "- 時間區間\n", " - 每小時\n", "- 這些都是英文字,那地區設定要為台灣嗎?\n", " - 對" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2021-07-11T18:20:54.578022Z", "start_time": "2021-07-11T18:20:52.518024Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Using matplotlib backend: Qt5Agg\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "%matplotlib" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-07-11T18:20:55.746294Z", "start_time": "2021-07-11T18:20:54.584029Z" } }, "outputs": [], "source": [ "import dataset\n", "import datetime\n", "import time\n", "# import the TrendReq method from the pytrends request module\n", "from pytrends.request import TrendReq\n", "from pprint import pprint" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2021-07-11T18:20:57.673496Z", "start_time": "2021-07-11T18:20:56.408287Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", " | id | \n", "from_mid | \n", "from_title | \n", "title | \n", "mid | \n", "ttype | \n", "dt | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "/m/02wbm | \n", "food | \n", "Eating | \n", "/m/01f5gx | \n", "Topic | \n", "2021-07-06 22:31:16 | \n", "
1 | \n", "2 | \n", "/m/02wbm | \n", "food | \n", "Chinese cuisine | \n", "/m/01xw9 | \n", "Cuisine | \n", "2021-07-06 22:31:18 | \n", "
2 | \n", "3 | \n", "/m/02wbm | \n", "food | \n", "Dog food | \n", "/m/01jbnd | \n", "Food | \n", "2021-07-06 22:31:18 | \n", "
3 | \n", "4 | \n", "/m/02wbm | \n", "food | \n", "Food truck | \n", "/m/04s_6n | \n", "Topic | \n", "2021-07-06 22:31:18 | \n", "
4 | \n", "5 | \n", "/m/02wbm | \n", "food | \n", "Truck | \n", "/m/07r04 | \n", "Body style | \n", "2021-07-06 22:31:18 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
315 | \n", "341 | \n", "/m/02zkwn | \n", "Diet | \n", "ketosis | \n", "/g/11bc59565f | \n", "Topic | \n", "2021-07-07 09:13:01 | \n", "
316 | \n", "342 | \n", "/m/02zkwn | \n", "Diet | \n", "Dietary fiber | \n", "/m/0hkwr | \n", "Topic | \n", "2021-07-07 09:13:01 | \n", "
317 | \n", "343 | \n", "/m/02zkwn | \n", "Diet | \n", "Protein | \n", "/m/05wvs | \n", "Topic | \n", "2021-07-07 09:13:01 | \n", "
318 | \n", "344 | \n", "/m/02zkwn | \n", "Diet | \n", "Cholesterol | \n", "/m/01w_3 | \n", "Chemical compound | \n", "2021-07-07 09:13:01 | \n", "
319 | \n", "345 | \n", "/m/02zkwn | \n", "Diet | \n", "Muscle | \n", "/m/04_fs | \n", "Topic | \n", "2021-07-07 09:13:01 | \n", "
320 rows × 7 columns
\n", "\n", " | Topic | \n", "isPartial | \n", "
---|---|---|
date | \n", "\n", " | \n", " |
2021-07-10 14:00:00 | \n", "27 | \n", "False | \n", "
2021-07-10 15:00:00 | \n", "17 | \n", "False | \n", "
2021-07-10 16:00:00 | \n", "38 | \n", "False | \n", "
2021-07-10 17:00:00 | \n", "15 | \n", "False | \n", "
2021-07-10 18:00:00 | \n", "11 | \n", "False | \n", "
... | \n", "... | \n", "... | \n", "
2021-07-17 09:00:00 | \n", "34 | \n", "False | \n", "
2021-07-17 10:00:00 | \n", "26 | \n", "False | \n", "
2021-07-17 11:00:00 | \n", "15 | \n", "False | \n", "
2021-07-17 12:00:00 | \n", "23 | \n", "False | \n", "
2021-07-17 13:00:00 | \n", "27 | \n", "True | \n", "
168 rows × 2 columns
\n", "\n", " | iot_kword | \n", "iot_date | \n", "iot_value | \n", "iot_dtime | \n", "
---|---|---|---|---|
0 | \n", "Topic | \n", "2021-07-10 14:00:00 | \n", "27 | \n", "2021-07-17 21:24:20.921178 | \n", "
1 | \n", "Topic | \n", "2021-07-10 15:00:00 | \n", "17 | \n", "2021-07-17 21:24:20.921178 | \n", "
2 | \n", "Topic | \n", "2021-07-10 16:00:00 | \n", "38 | \n", "2021-07-17 21:24:20.921178 | \n", "
3 | \n", "Topic | \n", "2021-07-10 17:00:00 | \n", "15 | \n", "2021-07-17 21:24:20.921178 | \n", "
4 | \n", "Topic | \n", "2021-07-10 18:00:00 | \n", "11 | \n", "2021-07-17 21:24:20.921178 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
163 | \n", "Topic | \n", "2021-07-17 09:00:00 | \n", "34 | \n", "2021-07-17 21:24:20.921178 | \n", "
164 | \n", "Topic | \n", "2021-07-17 10:00:00 | \n", "26 | \n", "2021-07-17 21:24:20.921178 | \n", "
165 | \n", "Topic | \n", "2021-07-17 11:00:00 | \n", "15 | \n", "2021-07-17 21:24:20.921178 | \n", "
166 | \n", "Topic | \n", "2021-07-17 12:00:00 | \n", "23 | \n", "2021-07-17 21:24:20.921178 | \n", "
167 | \n", "Topic | \n", "2021-07-17 13:00:00 | \n", "27 | \n", "2021-07-17 21:24:20.921178 | \n", "
168 rows × 4 columns
\n", "