123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import re
- import difflib
- import math
- def sentence_time_ratio(text,maxLen):
-
- total_len = len(text)
- if total_len > maxLen:
- left_word = total_len % maxLen
- times = int(math.ceil(total_len/maxLen))
- if left_word < 5:
- times+=1
- sen_len = int(total_len/times)
-
- time_ratio = [None]*times
- sentences = [None]*times
- print(times,',',total_len,",",sen_len)
- for t in range(times):
-
- sentences[t] = text[t*sen_len:t*sen_len+sen_len]
- time_ratio[t] = len(sentences[t])/total_len
- else:
- time_ratio = [1]
- sentences = [text]
-
- return time_ratio, sentences
- #1 sentence in, spliited array out
- def parse_script(file_path,gt_list):
- with open(file_path, 'r',encoding="utf-8") as f:
- raw_lines = [line.strip() for line in f]
- lines = adjustSub_by_text_similarity(gt_list,raw_lines)
- #make dict
- dict_list = []
- for idx in range(len(lines)):
- script={}
- script['content'] = lines[idx]
- time_raw = raw_lines[idx * 4 +1 ].split(' --> ')
- start = time_raw[0].split(':')
- stop = time_raw[1].split(':')
- script['start'] = float(start[0])*3600 + float(start[1])*60 + float(start[2].replace(',','.'))
- script['stop'] = float(stop[0])*3600 + float(stop[1])*60 + float(stop[2].replace(',','.'))
- dict_list.append(script)
- #merge duplicated sentences
- script_not_dup_list = []
- for idx in range(len(dict_list)):
- dup_list = []
- for idx_inner in range(len(dict_list)):
- if dict_list[idx_inner]['content']==dict_list[idx]['content']:
- dup_list.append(idx_inner)
- for dup_idx in dup_list:
- if dup_idx == min(dup_list):
- dict_list[dup_idx]['type'] = 'lead_sentence'
- else:
- dict_list[dup_idx]['type'] = 'duplicated'
- dict_list[dup_list[0]]['stop'] = dict_list[dup_list[-1]]['stop']
- if dict_list[idx]['type'] == 'lead_sentence':
- script_not_dup_list.append(dict_list[idx])
-
- #avoid subtitle overlapping ? Timeline overlapping not found currently
-
- #cut by max length----> eng seperated problem {eng_idx}
- #ENG counts, zh counts, space counts
- new_idx = 0
- splitted_dict = []
- for dic in dict_list:
- time_ratio, sentences = sentence_time_ratio(dic['content'],13)
- for s in range(len(sentences)):
- new_dict = {}
- new_dict['index'] = new_idx
- start = dic['start']
- for t in range(s):
- start += (dic['duration']*time_ratio[t])
- new_dict['start'] = start
- new_dict['duration'] = dic['duration'] * time_ratio[s]
- new_dict['content'] = sentences[s]
- new_idx+=1
- splitted_dict.append(new_dict)
- return splitted_dict
- def adjustSub_by_text_similarity(gts,gens_raw):
- gens = []
- for idx in range(int((len(gens_raw)+1)/4)):
- gens.append(gens_raw[idx*4+2])
-
- combine2 = [''.join([i,j]) for i,j in zip(gts, gts[1:])]
- combine3 = [''.join([i,j,k]) for i,j,k in zip(gts, gts[1:], gts[2:])]
- alls = gts + combine2 + combine3
- adjusted = [None]*len(gens)
- duplicated_list = []
- for idx in range(len(gens)):
- match_text = difflib.get_close_matches(gens[idx], alls, cutoff=0.1)
- if match_text[0] in duplicated_list:
- for mt in match_text:
- if mt == adjusted[idx-1] or mt not in duplicated_list:
- adjusted[idx] = mt
- break
- else:
- adjusted[idx] = match_text[0]
- duplicated_list.append(match_text[0])
- return adjusted
- def trim_punctuation(s):
- pat_block = u'[^\u4e00-\u9fff0-9a-zA-Z]+';
- pattern = u'([0-9]+{0}[0-9]+)|{0}'.format(pat_block)
- res = re.sub(pattern, lambda x: x.group(1) if x.group(1) else u" " ,s)
- return res
- def splitter(s):
- for sent in re.findall(u'[^!?,。\!\?]+[!? 。\!\?]?', s, flags=re.U):
- yield sent
- def split_by_pun(s):
- res = list(splitter(s))
- return res
- def split_by_word(s):
- slice_size = 3
- paragraph_len = len(s)
- slice_num = int(math.ceil(paragraph_len/slice_size))
- slice_list = []
- for n in range(slice_num):
- slice_list.append(s[n*slice_size:n*slice_size+slice_size])
- return slice_list
- raw_str = '更糟糕的是,與大量關注相伴的並非用戶讚賞,而是 Windows 10 on ARM 的不成熟暴露無遺,以及隨之而來的如潮差評──對用戶使用體驗影響最惡劣的,莫過於 Windows 10 on ARM 僅能透過模擬兼容老舊過時的 32 位元 x86 應用,而對效能與普及度俱佳的 64 位元 x86(即 x64)應用無能為力'
- sub_dict = parse_script("out.txt",split_by_pun(raw_str))
|