huaisianhuang преди 3 години
родител
ревизия
34722f62c4
променени са 2 файла, в които са добавени 75 реда и са изтрити 0 реда
  1. 33 0
      webSite/content/news/ai-anchor-tech.md
  2. 42 0
      webSite/content/news/ai-introduction.md

+ 33 - 0
webSite/content/news/ai-anchor-tech.md

@@ -0,0 +1,33 @@
++++
+title = "什麼是虛擬主播? 使用什麼技術合成?"
+date = "2021-07-19T00:21:34+08:00"
+tags = ["seo","AI"]
+type = "blog"
+categories = ["seo"]
+banner = "img/banners/banner-3.jpg"
++++
+
+## **什麼是虛擬主播?**
+
+AI虛擬主播——由中國科技公司搜狗和新華社聯合出品的全球首個虛擬真人主持人,將以更加生動的面部表情和手勢進行量產,為國內外媒體和觀眾提供實時直播。
+
+在 11 月在浙江省烏鎮舉行的第五屆世界互聯網大會上首次亮相七個月後,機器人化身已經於 5 月在阿拉伯聯合酋長國的阿布扎比​​媒體和 6 月初的俄羅斯新聞機構 ITAR-Tass 找到了新工作。
+
+就像他們在新華社的同行一樣,他們可以根據文本輸入以真人主持人的形象播放新聞。適當的嘴巴動作、發音和語調以及自然的面部表情使他們幾乎與真人無法區分。搜狗語音交互技術中心總經理王延峰表示,唯一的區別是他們說的是阿拉伯語或俄語,而不是中文。
+
+他說,阿布扎比媒體的新“員工”將準備在 2019 年底前報導新聞,並在 2020 年報導迪拜世博會。
+
+阿聯酋人工智能國務部長 Omar bin Sultan Al Olama 表示,人工智能的應用將為當地媒體行業帶來重大變化,並服務於建設知識型社會和經濟的國家戰略。
+
+6 月 6 日至 8 日,新華社、ITAR-Tass 和搜狗在第 23 屆聖彼得堡國際經濟論壇上發布了世界上第一個講俄語的 AI 新聞主播。
+
+據中國報紙 Cankaxiaoxi 報導,ITARTass 的國際關係專家 Elizaveta Zelenskaya 的圖像和聲音被用來創建 AI 主播,她說她閱讀新聞和拍攝視頻時具有多種情緒 - 例如喜悅和悲傷。
+
+## **虛擬主播使用什麼技術合成?**
+AI虛擬主播可以利用智能綜合模擬,同步提取真人主播的語音、表情等特徵。AI主播訓練難度極大,涉及深度學習、機器翻譯、多語言語音合成等多項核心技術。需要讓虛擬主播在聲音、情感、肢體動作等方面都像人一樣。因此,像使用人工智能技術分析文本和情感一樣,需要多維度考慮。
+
+學術界和私營部門的研究人員致力於開發可以創建虛擬錨的技術。由於大數據分析驅動的面部識別、唇讀和機器學習等人工智能技術的發展,這類研究近年來發展迅速。在開發虛擬主播技術時,人工智能研究人員團隊分析了來自直播主播廣播的音頻和視頻數據,使他們能夠開發一個模型,然後可以生成一個廣播文本輸入的逼真虛擬主播。
+
+該技術有可能在各種不同的場景中實現人與機器之間更自然的交互。除了生成娛樂內容外,人工智能生成的角色還可以通過交互式語音操作系統啟用,並用於在教育、醫療和法律領域提供個性化內容。
+
+虛擬主技術專注於自然語言處理和機器學習,在語音識別、圖像識別和直觀問答方面擁有行業領先的能力。其技術之語音識別技術準確率超過97%,圖像識別技術準確率達到96%。此外,在備受矚目的 2017 WMT 漢英機器翻譯比賽中獲得第一名,同樣在中文短文本對話比賽中獲得第一名,該比賽評估機器生成人類的能力。比如對文本查詢的響應。 

+ 42 - 0
webSite/content/news/ai-introduction.md

@@ -0,0 +1,42 @@
++++
+title = "什麼是人工智慧 "
+date = "2021-07-19T00:21:34+08:00"
+tags = ["seo","AI"]
+type = "blog"
+categories = ["seo"]
+banner = "img/banners/banner-3.jpg"
++++
+
+## **什麼是人工智慧?**
+
+人工智慧(英語名稱為Artificial Intelligence,簡稱AI),又稱人工智能,是計算機科學領域的部分範疇,意指讓機器具備和人類一樣的思考邏輯與行為模式。發展過程包括學習,可以大量讀取資訊、並判斷何時使用該資訊、感知、推理,可利用已知資訊做出結論、自我校正,以及如何操縱或移動物品。人工智慧發展的領域包括但不限於:語音識別、電腦視覺 與專家系統。
+知識工程是過去人工智慧研究的核心部位。人工智慧發展的第一步,必須是讓機器大量的讀取資料,並讓機器能夠判斷物件、進行歸類統整,並能判斷資料間的關聯度。知識工程的發展讓機器能具備專業知識,但另一方面,讓機器擁有常識、推論思考並解決問體卻相對困難。
+指由人製造出來的機器所表現出來的智慧。通常人工智慧是指透過普通電腦程式來呈現人類智慧的技術。該詞也指出研究這樣的智慧系統是否能夠達成,以及如何達成。同時,透過醫學、神經科學、機器人學及統計學等的進步,常態預測則認為人類的很多職業也逐漸被其取代。
+人工智慧於一般教材中的定義領域是「智慧主體的研究與設計」,智慧主體指一個可以觀察周遭環境並作出行動以達致目標的系統。約翰·麥卡錫於1955年的定義是「製造智慧機器的科學與工程」。安德烈亞斯·卡普蘭和麥可·海恩萊因將人工智慧定義為「系統正確解釋外部資料,從這些資料中學習,並利用這些知識透過靈活適應達成特定目標和任務的能力」。
+人工智慧的研究是高度技術性和專業的,各分支領域都是深入且各不相通的,因而涉及範圍極廣。人工智慧的研究可以分為幾個技術問題。其分支領域主要集中在解決具體問題,其中之一是,如何使用各種不同的工具完成特定的應用程式。
+AI的核心問題包括建構能夠跟人類似甚至超卓的推理、知識、規劃、學習、交流、感知、移物、使用工具和操控機械的能力等。人工智慧目前仍然是該領域的長遠目標。目前弱人工智慧已經有初步成果,甚至在一些影像辨識、語言分析、棋類遊戲等等單方面的能力達到了超越人類的水準,而且人工智慧的通用性代表著,能解決上述的問題的是一樣的AI程式,無須重新開發演算法就可以直接使用現有的AI完成任務,與人類的處理能力相同,但達到具備思考能力的統合強人工智慧還需要時間研究,比較流行的方法包括統計方法,計算智慧和傳統意義的AI。目前有大量的工具應用了人工智慧,其中包括搜尋和數學最佳化、邏輯推演。而基於仿生學、認知心理學,以及基於概率論和經濟學的演算法等等也在逐步探索當中。
+
+
+## **人工智慧如何發展?**
+
+二十世紀末期,傳統的人工智慧無法容許誤差的缺點被大型商用系統給淘汰,改以投入統計學模型為基底的機器學習(Machine Learning),其成本較低、彈性佳且允許誤差的特性,幾乎取代掉傳統人工智慧而成為現今發展的主流技術。隨著不斷進步的MCU、CPU、GPU甚至是專為機器學習處理設計的NPU,加上支援向量機(SVM)模型的橫空出世,更是讓機器學習又往深度學習這一技術分支去發展,更有效地分類(或分群)來處理各式結構化、半結構化甚至是非結構化的資料,替人類省去金錢與時間成本並提升工作的執行效率。
+
+
+## **人工智慧運用什麼技術原理?**
+機器學習,一種人工智慧的技術,不同於傳統程式,機器學習是通過處理並學習龐大的數據後,利用歸納推理的方式來解決問題,所以當新的數據出現,機器學習模型即能更新自己對於這個世界的理解,並改變他對於原本問題的認知。簡單來說,假設現在有一個人對於美醜沒有概念,那麼你把他帶到一群人面前,並指著其中一個說是美、一個是醜、另一個是美等等…隨著這位本無審美觀的人看到更多資訊後,他也會開始對審美這個觀念有一定的想法。 而關鍵在於,數據的量一定要足夠大且數據的質一定要好,才能讓機器學習模型更好的判斷問題的答案。
+深度學習,屬於機器學習的分支,利用多層次的人工神經網路透過數據學習,其中兩種最為主要的類別為卷積神經網路(CNN)以及遞歸神經網路(RNN)。
+CNN較適合如圖片、影片等的空間數據類型,透過不同階級的特色來識別圖像,例如從一個鼻子的特徵、眼睛的特徵、嘴巴的特徵、三者彼此的關係為何、再到最後變成一張人臉。CNN的發展對於需要快速識別周圍環境的自動駕駛至關重要,同時圖像識別的技術,也是工業4.0的核心技術之一。 RNN則較適合如語音、文字等的序列型數據,不同於其他的神經網路,對於RNN,所有的input都是相連的,所有處理過的資訊都會在訓練的過程中被記住,而也是這特色,讓它非常適合處理自然語言。
+強化學習同樣為機器學習的分支之一,為一種透過獎勵機制以及懲罰機制的方式,訓練演算法模型的方法。 也就是說,當演算法做了我們所期望之行為時,我們就會透過獎勵的方式,明示演算法做更多如此行為,反之亦然。  而我們評估演算法在執行每一個任務的有效性的方式,即是透過觀察其分數(被獎勵之多寡)來衡量。
+
+## **人工智慧可以用在哪些地方?**
+
+機器學習 (Machine Learning) 和深度學習 (Deep Learning) 這兩個技術分支都是從人工智慧這個學科衍生出來的,上述兩類技術的核心概念皆為數據分析,大致可以分為「監督式學習」和「非監督式學習」,「監督式學習」使用能預期結果的訓練資料,而「非監督式學習」則使用無法預期結果的訓練資料。人工智慧處理的問題能再分為「迴歸問題」和「歸類問題」。迴歸問題會從輸入的資料庫中找出脈絡,利用分析來發展出相對應的程式,藉此預測並做出準確的判斷,歸類問題則可將輸入的資料區分出不同類別,簡而言之,提供 A.I. 越多的資料,它就會學習的越快且變得越聰明。
+人工智慧參與其中的領域很廣且項目很細,凡舉娛樂、教育、醫療、金融、製造、零售、交通、農業、博弈等等,都可以看到人工智慧參與其中的跡象,實際應用像是機器學習與深度學習下的語音辨識、影像辨識、自然語言處理、聊天機器人、推薦引擎、廣告投放、大數據分析都可以算是其現今普遍的應用。
+A.I.確確實實地改變了人們的工作及生活型態,像是密集勞動力為主的產業和社會環境,減少傳統產業中的重複性工作並帶來新的作業方式,提高生產效率並降低產出成本,協助
+傳統經濟走向智慧化轉型。現在許多科技業、電信業甚至是金融業都求才若渴,希望能導入A.I.來強化自家提供給客戶的加值型應用。隨著技術不斷地提升,在可期盼的未來裡,終將實作出幾近人類的A.I.系統來協助個人或企業解決各式各樣的問題,營造更便利、更智慧、更貼心的感受。
+AI正悄悄改變你我生活,抓住未來科技新趨勢,成為人工智慧的推手!
+目前,以機器學習為基礎的人工智慧,不可能擁有人類的思考及情緒,沒辦法有人類的常識,更不會有真正的智慧。即便如此,今日的人工智慧仍然足以將許多原本由人類執行的工作做得更好。
+身為職場工作者,要為未來做好準備,就一定要有能力分析,人工智慧將會對自己的工作帶來什麼樣的影響?提早做好準備。即使沒有影響,更要認知如何利用人工智慧這項工具為自己加值。
+當你的工作內容多數可以由人工智慧代勞時,不用太擔心,這不會是一瞬間發生的事情,工作結構的改變只會慢慢進行,而且一定會看見改變的訊號。
+與其不斷精進技能與人工智慧競爭,如打字速度;不如考慮調整工作性質,逐漸轉往人類較擅長的領域,讓自己從可能被取代,升級為讓人工智慧為自己工作的人才。對於非工程背景的職場工作者來說,能不能善用人工智慧、與人工智慧協同合作,將是影響未來職場競爭力的關鍵。
+