#!usr/bin/env python # -*- coding: utf-8 -*- # author: kuangdd # date: 2019/11/30 """ ### audio_griffinlim griffinlim声码器,线性频谱转语音,梅尔频谱转语音,TensorFlow版本转语音,梅尔频谱和线性频谱相互转换。 """ from pathlib import Path import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(Path(__name__).stem) import librosa import librosa.filters import numpy as np from scipy import signal from scipy.io import wavfile from .audio_spectrogram import default_hparams from .audio_io import Dict2Obj # try: # import tensorflow as tf # except ImportError as e: # logger.info("ImportError: {}".format(e)) tmp = dict([('use_lws', False), ('frame_shift_ms', None), ('silence_threshold', 2), ('griffin_lim_iters', 30)]) default_hparams.update(tmp) def hparams_debug_string(hparams=None): hparams = hparams or default_hparams values = hparams.values() hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"] return "Hyperparameters:\n" + "\n".join(hp) def inv_linear_spectrogram(linear_spectrogram, hparams=None): """Converts linear spectrogram to waveform using librosa""" hparams = hparams or default_hparams if hparams.signal_normalization: D = _denormalize(linear_spectrogram, hparams) else: D = linear_spectrogram S = _db_to_amp(D + hparams.ref_level_db) # Convert back to linear if hparams.use_lws: processor = _lws_processor(hparams) D = processor.run_lws(S.astype(np.float64).T ** hparams.power) y = processor.istft(D).astype(np.float32) return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) else: return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) def inv_mel_spectrogram(mel_spectrogram, hparams=None): """Converts mel spectrogram to waveform using librosa""" hparams = hparams or default_hparams if hparams.signal_normalization: D = _denormalize(mel_spectrogram, hparams) else: D = mel_spectrogram S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear if hparams.use_lws: processor = _lws_processor(hparams) D = processor.run_lws(S.astype(np.float64).T ** hparams.power) y = processor.istft(D).astype(np.float32) return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) else: return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) def inv_linear_spectrogram_tensorflow(linear_spectrogram, hparams=None): '''Builds computational graph to convert spectrogram to waveform using TensorFlow. Unlike inv_spectrogram, this does NOT invert the preemphasis. The caller should call inv_preemphasis on the output after running the graph. linear_spectrogram.shape[1] = n_fft ''' import tensorflow as tf hparams = hparams or default_hparams S = _db_to_amp_tensorflow(_denormalize_tensorflow(linear_spectrogram, hparams) + hparams.ref_level_db) return _griffin_lim_tensorflow(tf.pow(S, hparams.power), hparams) def inv_linear_spectrogram_tf(linear_spectrogram, hparams=None): """ 返回wav语音信号。 linear_spectrogram.shape[1] = num_freq = (n_fft / 2) + 1 """ import tensorflow as tf hparams = hparams or default_hparams _shape = linear_spectrogram.shape tmp = np.concatenate( (linear_spectrogram, np.zeros((_shape[0], (hparams.n_fft // 2) + 1 - _shape[1]), dtype=np.float32)), axis=1) wav_tf = inv_linear_spectrogram_tensorflow(tmp, hparams) with tf.Session() as sess: return sess.run(wav_tf) # 以下模块后续版本可能删除 def load_wav(path, sr): return librosa.core.load(path, sr=sr)[0] def save_wav(wav, path, sr): out = wav * 32767 / max(0.01, np.max(np.abs(wav))) # proposed by @dsmiller wavfile.write(path, sr, out.astype(np.int16)) def save_wavenet_wav(wav, path, sr): librosa.output.write_wav(path, wav, sr=sr) def preemphasis(wav, k, preemphasize=True): if preemphasize: return signal.lfilter([1, -k], [1], wav) return wav def inv_preemphasis(wav, k, inv_preemphasize=True): if inv_preemphasize: return signal.lfilter([1], [1, -k], wav) return wav # From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py def start_and_end_indices(quantized, silence_threshold=2): for start in range(quantized.size): if abs(quantized[start] - 127) > silence_threshold: break for end in range(quantized.size - 1, 1, -1): if abs(quantized[end] - 127) > silence_threshold: break assert abs(quantized[start] - 127) > silence_threshold assert abs(quantized[end] - 127) > silence_threshold return start, end def get_hop_size(hparams=None): hparams = hparams or default_hparams hop_size = hparams.hop_size if hop_size is None: assert hparams.frame_shift_ms is not None hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate) return hop_size def linear_spectrogram(wav, hparams=None): hparams = hparams or default_hparams D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db if hparams.signal_normalization: return _normalize(S, hparams) return S def mel_spectrogram(wav, hparams=None): hparams = hparams or default_hparams D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db if hparams.signal_normalization: return _normalize(S, hparams) return S def mel_spectrogram_feature(wav, hparams=None): """ Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform. Note: this not a log-mel spectrogram. """ hparams = hparams or default_hparams frames = librosa.feature.melspectrogram( wav, hparams.sample_rate, n_fft=hparams.n_fft, hop_length=hparams.hop_size, n_mels=hparams.num_mels ) return _amp_to_db(frames.astype(np.float32)) def linear2mel_spectrogram(linear_spectrogram, hparams=None): """Converts linear spectrogram to mel spectrogram""" hparams = hparams or default_hparams if hparams.signal_normalization: D = _denormalize(linear_spectrogram, hparams) else: D = linear_spectrogram D = _db_to_amp(D + hparams.ref_level_db) # Convert back to linear S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db if hparams.signal_normalization: return _normalize(S, hparams) return S def mel2linear_spectrogram(mel_spectrogram, hparams=None): """Converts mel spectrogram to linear spectrogram""" hparams = hparams or default_hparams if hparams.signal_normalization: D = _denormalize(mel_spectrogram, hparams) else: D = mel_spectrogram D = _mel_to_linear(_db_to_amp(D - hparams.ref_level_db), hparams) # Convert back to linear S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db if hparams.signal_normalization: return _normalize(S, hparams) return S def _lws_processor(hparams=None): hparams = hparams or default_hparams import lws return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech") def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8, hparams=None): hparams = hparams or default_hparams window_length = int(hparams.sample_rate * min_silence_sec) hop_length = int(window_length / 4) threshold = _db_to_amp(threshold_db) for x in range(hop_length, len(wav) - window_length, hop_length): if np.max(wav[x:x + window_length]) < threshold: return x + hop_length return len(wav) def _griffin_lim(S, hparams=None): """librosa implementation of Griffin-Lim Based on https://github.com/librosa/librosa/issues/434 """ hparams = hparams or default_hparams angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(np.complex) y = _istft(S_complex * angles, hparams) for i in range(hparams.griffin_lim_iters): angles = np.exp(1j * np.angle(_stft(y, hparams))) y = _istft(S_complex * angles, hparams) return y def _griffin_lim_tensorflow(S, hparams=None): '''TensorFlow implementation of Griffin-Lim Based on https://github.com/Kyubyong/tensorflow-exercises/blob/master/Audio_Processing.ipynb ''' import tensorflow as tf hparams = hparams or default_hparams with tf.variable_scope('griffinlim'): # TensorFlow's stft and istft operate on a batch of spectrograms; create batch of size 1 S = tf.expand_dims(S, 0) S_complex = tf.identity(tf.cast(S, dtype=tf.complex64)) y = _istft_tensorflow(S_complex, hparams) for i in range(hparams.griffin_lim_iters): est = _stft_tensorflow(y, hparams) angles = est / tf.cast(tf.maximum(1e-8, tf.abs(est)), tf.complex64) y = _istft_tensorflow(S_complex * angles, hparams) return tf.squeeze(y, 0) def _stft(y, hparams=None): hparams = hparams or default_hparams if hparams.use_lws: return _lws_processor(hparams).stft(y).T else: return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size, center=hparams.center) def _stft_tensorflow(signals, hparams=None): import tensorflow as tf hparams = hparams or default_hparams n_fft, hop_length, win_length = _stft_parameters(hparams) return tf.contrib.signal.stft(signals, win_length, hop_length, n_fft, pad_end=False) def _istft(y, hparams=None): hparams = hparams or default_hparams return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size, center=hparams.center) def _istft_tensorflow(stfts, hparams=None): import tensorflow as tf hparams = hparams or default_hparams n_fft, hop_length, win_length = _stft_parameters(hparams) return tf.contrib.signal.inverse_stft(stfts, win_length, hop_length, n_fft) def _stft_parameters(hparams=None): hparams = hparams or default_hparams n_fft = hparams.n_fft # (hparams.num_freq - 1) * 2 hop_length = hparams.hop_size # int(hparams.frame_shift_ms / 1000 * hparams.sample_rate) win_length = hparams.win_size # int(hparams.frame_length_ms / 1000 * hparams.sample_rate) return n_fft, hop_length, win_length ########################################################## # Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) def num_frames(length, fsize, fshift): """Compute number of time frames of spectrogram """ pad = (fsize - fshift) if length % fshift == 0: M = (length + pad * 2 - fsize) // fshift + 1 else: M = (length + pad * 2 - fsize) // fshift + 2 return M def pad_lr(x, fsize, fshift): """Compute left and right padding """ M = num_frames(len(x), fsize, fshift) pad = (fsize - fshift) T = len(x) + 2 * pad r = (M - 1) * fshift + fsize - T return pad, pad + r ########################################################## # Librosa correct padding def librosa_pad_lr(x, fsize, fshift): return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] def _linear_to_mel(spectogram, hparams=None): hparams = hparams or default_hparams if hparams.mel_basis is None: _mel_basis = _build_mel_basis(hparams) else: _mel_basis = hparams.mel_basis return np.dot(_mel_basis, spectogram) def _mel_to_linear(mel_spectrogram, hparams=None): hparams = hparams or default_hparams if hparams.inv_mel_basis is None: _inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams)) else: _inv_mel_basis = hparams.inv_mel_basis return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram)) def _build_mel_basis(hparams=None): hparams = hparams or default_hparams assert hparams.fmax <= hparams.sample_rate // 2 return librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=hparams.num_mels, fmin=hparams.fmin, fmax=hparams.fmax) def _amp_to_db(x, hparams=None): hparams = hparams or default_hparams min_level = np.exp(hparams.min_level_db / 20 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) def _db_to_amp(x): return np.power(10.0, (x) * 0.05) def _db_to_amp_tensorflow(x): import tensorflow as tf return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05) def _normalize(S, hparams=None): hparams = hparams or default_hparams ma = hparams.max_abs_value mi = hparams.min_level_db if hparams.allow_clipping_in_normalization: if hparams.symmetric_mels: return np.clip((2 * ma) * ((S - mi) / (-mi)) - ma, -ma, ma) else: return np.clip(ma * ((S - mi) / (-mi)), 0, ma) else: assert S.max() <= 0 and S.min() - mi >= 0 if hparams.symmetric_mels: return (2 * ma) * ((S - mi) / (-mi)) - ma else: return ma * ((S - mi) / (-mi)) def _denormalize(D, hparams=None): hparams = hparams or default_hparams ma = hparams.max_abs_value mi = hparams.min_level_db if hparams.allow_clipping_in_normalization: if hparams.symmetric_mels: return ((np.clip(D, -ma, ma) + ma) * -mi / (2 * ma)) + mi else: return (np.clip(D, 0, ma) * -mi / ma) + mi else: if hparams.symmetric_mels: return ((D + ma) * -mi / (2 * ma)) + mi else: return (D * -mi / ma) + mi def _denormalize_tensorflow(S, hparams=None): import tensorflow as tf hparams = hparams or default_hparams mi = hparams.min_level_db return (tf.clip_by_value(S, 0, 1) * -mi) + mi if __name__ == "__main__": print(__file__)