123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 |
- #!usr/bin/env python
- # -*- coding: utf-8 -*-
- # author: kuangdd
- # date: 2019/11/30
- """
- ### audio_griffinlim
- griffinlim声码器,线性频谱转语音,梅尔频谱转语音,TensorFlow版本转语音,梅尔频谱和线性频谱相互转换。
- """
- from pathlib import Path
- import logging
- logging.basicConfig(level=logging.INFO)
- logger = logging.getLogger(Path(__name__).stem)
- import librosa
- import librosa.filters
- import numpy as np
- from scipy import signal
- from scipy.io import wavfile
- from .audio_spectrogram import default_hparams
- from .audio_io import Dict2Obj
- # try:
- # import tensorflow as tf
- # except ImportError as e:
- # logger.info("ImportError: {}".format(e))
- tmp = dict([('use_lws', False), ('frame_shift_ms', None), ('silence_threshold', 2), ('griffin_lim_iters', 30)])
- default_hparams.update(tmp)
- def hparams_debug_string(hparams=None):
- hparams = hparams or default_hparams
- values = hparams.values()
- hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"]
- return "Hyperparameters:\n" + "\n".join(hp)
- def inv_linear_spectrogram(linear_spectrogram, hparams=None):
- """Converts linear spectrogram to waveform using librosa"""
- hparams = hparams or default_hparams
- if hparams.signal_normalization:
- D = _denormalize(linear_spectrogram, hparams)
- else:
- D = linear_spectrogram
- S = _db_to_amp(D + hparams.ref_level_db) # Convert back to linear
- if hparams.use_lws:
- processor = _lws_processor(hparams)
- D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
- y = processor.istft(D).astype(np.float32)
- return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
- else:
- return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
- def inv_mel_spectrogram(mel_spectrogram, hparams=None):
- """Converts mel spectrogram to waveform using librosa"""
- hparams = hparams or default_hparams
- if hparams.signal_normalization:
- D = _denormalize(mel_spectrogram, hparams)
- else:
- D = mel_spectrogram
- S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear
- if hparams.use_lws:
- processor = _lws_processor(hparams)
- D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
- y = processor.istft(D).astype(np.float32)
- return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
- else:
- return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
- def inv_linear_spectrogram_tensorflow(linear_spectrogram, hparams=None):
- '''Builds computational graph to convert spectrogram to waveform using TensorFlow.
- Unlike inv_spectrogram, this does NOT invert the preemphasis. The caller should call
- inv_preemphasis on the output after running the graph.
- linear_spectrogram.shape[1] = n_fft
- '''
- import tensorflow as tf
- hparams = hparams or default_hparams
- S = _db_to_amp_tensorflow(_denormalize_tensorflow(linear_spectrogram, hparams) + hparams.ref_level_db)
- return _griffin_lim_tensorflow(tf.pow(S, hparams.power), hparams)
- def inv_linear_spectrogram_tf(linear_spectrogram, hparams=None):
- """
- 返回wav语音信号。
- linear_spectrogram.shape[1] = num_freq = (n_fft / 2) + 1
- """
- import tensorflow as tf
- hparams = hparams or default_hparams
- _shape = linear_spectrogram.shape
- tmp = np.concatenate(
- (linear_spectrogram, np.zeros((_shape[0], (hparams.n_fft // 2) + 1 - _shape[1]), dtype=np.float32)), axis=1)
- wav_tf = inv_linear_spectrogram_tensorflow(tmp, hparams)
- with tf.Session() as sess:
- return sess.run(wav_tf)
- # 以下模块后续版本可能删除
- def load_wav(path, sr):
- return librosa.core.load(path, sr=sr)[0]
- def save_wav(wav, path, sr):
- out = wav * 32767 / max(0.01, np.max(np.abs(wav)))
- # proposed by @dsmiller
- wavfile.write(path, sr, out.astype(np.int16))
- def save_wavenet_wav(wav, path, sr):
- librosa.output.write_wav(path, wav, sr=sr)
- def preemphasis(wav, k, preemphasize=True):
- if preemphasize:
- return signal.lfilter([1, -k], [1], wav)
- return wav
- def inv_preemphasis(wav, k, inv_preemphasize=True):
- if inv_preemphasize:
- return signal.lfilter([1], [1, -k], wav)
- return wav
- # From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py
- def start_and_end_indices(quantized, silence_threshold=2):
- for start in range(quantized.size):
- if abs(quantized[start] - 127) > silence_threshold:
- break
- for end in range(quantized.size - 1, 1, -1):
- if abs(quantized[end] - 127) > silence_threshold:
- break
- assert abs(quantized[start] - 127) > silence_threshold
- assert abs(quantized[end] - 127) > silence_threshold
- return start, end
- def get_hop_size(hparams=None):
- hparams = hparams or default_hparams
- hop_size = hparams.hop_size
- if hop_size is None:
- assert hparams.frame_shift_ms is not None
- hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
- return hop_size
- def linear_spectrogram(wav, hparams=None):
- hparams = hparams or default_hparams
- D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
- S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db
- if hparams.signal_normalization:
- return _normalize(S, hparams)
- return S
- def mel_spectrogram(wav, hparams=None):
- hparams = hparams or default_hparams
- D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
- S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db
- if hparams.signal_normalization:
- return _normalize(S, hparams)
- return S
- def mel_spectrogram_feature(wav, hparams=None):
- """
- Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform.
- Note: this not a log-mel spectrogram.
- """
- hparams = hparams or default_hparams
- frames = librosa.feature.melspectrogram(
- wav,
- hparams.sample_rate,
- n_fft=hparams.n_fft,
- hop_length=hparams.hop_size,
- n_mels=hparams.num_mels
- )
- return _amp_to_db(frames.astype(np.float32))
- def linear2mel_spectrogram(linear_spectrogram, hparams=None):
- """Converts linear spectrogram to mel spectrogram"""
- hparams = hparams or default_hparams
- if hparams.signal_normalization:
- D = _denormalize(linear_spectrogram, hparams)
- else:
- D = linear_spectrogram
- D = _db_to_amp(D + hparams.ref_level_db) # Convert back to linear
- S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db
- if hparams.signal_normalization:
- return _normalize(S, hparams)
- return S
- def mel2linear_spectrogram(mel_spectrogram, hparams=None):
- """Converts mel spectrogram to linear spectrogram"""
- hparams = hparams or default_hparams
- if hparams.signal_normalization:
- D = _denormalize(mel_spectrogram, hparams)
- else:
- D = mel_spectrogram
- D = _mel_to_linear(_db_to_amp(D - hparams.ref_level_db), hparams) # Convert back to linear
- S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db
- if hparams.signal_normalization:
- return _normalize(S, hparams)
- return S
- def _lws_processor(hparams=None):
- hparams = hparams or default_hparams
- import lws
- return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech")
- def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8, hparams=None):
- hparams = hparams or default_hparams
- window_length = int(hparams.sample_rate * min_silence_sec)
- hop_length = int(window_length / 4)
- threshold = _db_to_amp(threshold_db)
- for x in range(hop_length, len(wav) - window_length, hop_length):
- if np.max(wav[x:x + window_length]) < threshold:
- return x + hop_length
- return len(wav)
- def _griffin_lim(S, hparams=None):
- """librosa implementation of Griffin-Lim
- Based on https://github.com/librosa/librosa/issues/434
- """
- hparams = hparams or default_hparams
- angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
- S_complex = np.abs(S).astype(np.complex)
- y = _istft(S_complex * angles, hparams)
- for i in range(hparams.griffin_lim_iters):
- angles = np.exp(1j * np.angle(_stft(y, hparams)))
- y = _istft(S_complex * angles, hparams)
- return y
- def _griffin_lim_tensorflow(S, hparams=None):
- '''TensorFlow implementation of Griffin-Lim
- Based on https://github.com/Kyubyong/tensorflow-exercises/blob/master/Audio_Processing.ipynb
- '''
- import tensorflow as tf
- hparams = hparams or default_hparams
- with tf.variable_scope('griffinlim'):
- # TensorFlow's stft and istft operate on a batch of spectrograms; create batch of size 1
- S = tf.expand_dims(S, 0)
- S_complex = tf.identity(tf.cast(S, dtype=tf.complex64))
- y = _istft_tensorflow(S_complex, hparams)
- for i in range(hparams.griffin_lim_iters):
- est = _stft_tensorflow(y, hparams)
- angles = est / tf.cast(tf.maximum(1e-8, tf.abs(est)), tf.complex64)
- y = _istft_tensorflow(S_complex * angles, hparams)
- return tf.squeeze(y, 0)
- def _stft(y, hparams=None):
- hparams = hparams or default_hparams
- if hparams.use_lws:
- return _lws_processor(hparams).stft(y).T
- else:
- return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size,
- center=hparams.center)
- def _stft_tensorflow(signals, hparams=None):
- import tensorflow as tf
- hparams = hparams or default_hparams
- n_fft, hop_length, win_length = _stft_parameters(hparams)
- return tf.contrib.signal.stft(signals, win_length, hop_length, n_fft, pad_end=False)
- def _istft(y, hparams=None):
- hparams = hparams or default_hparams
- return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size, center=hparams.center)
- def _istft_tensorflow(stfts, hparams=None):
- import tensorflow as tf
- hparams = hparams or default_hparams
- n_fft, hop_length, win_length = _stft_parameters(hparams)
- return tf.contrib.signal.inverse_stft(stfts, win_length, hop_length, n_fft)
- def _stft_parameters(hparams=None):
- hparams = hparams or default_hparams
- n_fft = hparams.n_fft # (hparams.num_freq - 1) * 2
- hop_length = hparams.hop_size # int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
- win_length = hparams.win_size # int(hparams.frame_length_ms / 1000 * hparams.sample_rate)
- return n_fft, hop_length, win_length
- ##########################################################
- # Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
- def num_frames(length, fsize, fshift):
- """Compute number of time frames of spectrogram
- """
- pad = (fsize - fshift)
- if length % fshift == 0:
- M = (length + pad * 2 - fsize) // fshift + 1
- else:
- M = (length + pad * 2 - fsize) // fshift + 2
- return M
- def pad_lr(x, fsize, fshift):
- """Compute left and right padding
- """
- M = num_frames(len(x), fsize, fshift)
- pad = (fsize - fshift)
- T = len(x) + 2 * pad
- r = (M - 1) * fshift + fsize - T
- return pad, pad + r
- ##########################################################
- # Librosa correct padding
- def librosa_pad_lr(x, fsize, fshift):
- return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
- def _linear_to_mel(spectogram, hparams=None):
- hparams = hparams or default_hparams
- if hparams.mel_basis is None:
- _mel_basis = _build_mel_basis(hparams)
- else:
- _mel_basis = hparams.mel_basis
- return np.dot(_mel_basis, spectogram)
- def _mel_to_linear(mel_spectrogram, hparams=None):
- hparams = hparams or default_hparams
- if hparams.inv_mel_basis is None:
- _inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams))
- else:
- _inv_mel_basis = hparams.inv_mel_basis
- return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram))
- def _build_mel_basis(hparams=None):
- hparams = hparams or default_hparams
- assert hparams.fmax <= hparams.sample_rate // 2
- return librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=hparams.num_mels,
- fmin=hparams.fmin, fmax=hparams.fmax)
- def _amp_to_db(x, hparams=None):
- hparams = hparams or default_hparams
- min_level = np.exp(hparams.min_level_db / 20 * np.log(10))
- return 20 * np.log10(np.maximum(min_level, x))
- def _db_to_amp(x):
- return np.power(10.0, (x) * 0.05)
- def _db_to_amp_tensorflow(x):
- import tensorflow as tf
- return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05)
- def _normalize(S, hparams=None):
- hparams = hparams or default_hparams
- ma = hparams.max_abs_value
- mi = hparams.min_level_db
- if hparams.allow_clipping_in_normalization:
- if hparams.symmetric_mels:
- return np.clip((2 * ma) * ((S - mi) / (-mi)) - ma, -ma, ma)
- else:
- return np.clip(ma * ((S - mi) / (-mi)), 0, ma)
- else:
- assert S.max() <= 0 and S.min() - mi >= 0
- if hparams.symmetric_mels:
- return (2 * ma) * ((S - mi) / (-mi)) - ma
- else:
- return ma * ((S - mi) / (-mi))
- def _denormalize(D, hparams=None):
- hparams = hparams or default_hparams
- ma = hparams.max_abs_value
- mi = hparams.min_level_db
- if hparams.allow_clipping_in_normalization:
- if hparams.symmetric_mels:
- return ((np.clip(D, -ma, ma) + ma) * -mi / (2 * ma)) + mi
- else:
- return (np.clip(D, 0, ma) * -mi / ma) + mi
- else:
- if hparams.symmetric_mels:
- return ((D + ma) * -mi / (2 * ma)) + mi
- else:
- return (D * -mi / ma) + mi
- def _denormalize_tensorflow(S, hparams=None):
- import tensorflow as tf
- hparams = hparams or default_hparams
- mi = hparams.min_level_db
- return (tf.clip_by_value(S, 0, 1) * -mi) + mi
- if __name__ == "__main__":
- print(__file__)
|