import faiss import numpy as np import json from time import time import asyncio from datasets import Dataset from typing import List from dotenv import load_dotenv import os import pickle from supabase.client import Client, create_client from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser import pandas as pd from langchain_core.documents import Document from langchain.load import dumps, loads # Import from the parent directory import sys from RAG_strategy import multi_query_chain sys.path.append('..') # from RAG_strategy_Taide import taide_llm, system_prompt, multi_query system_prompt: str = "你是一個來自台灣的AI助理,你的名字是 TAIDE,樂於以台灣人的立場幫助使用者,會用繁體中文回答問題。" # llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0) from langchain.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from add_vectordb import GetVectorStore # from local_llm import ollama_, hf # # from local_llm import ollama_, taide_llm, hf # llm = hf() # llm = taide_llm # Import RAGAS metrics from ragas import evaluate from ragas.metrics import answer_relevancy, faithfulness, context_recall, context_precision # Load environment variables load_dotenv('../../.env') supabase_url = os.getenv("SUPABASE_URL") supabase_key = os.getenv("SUPABASE_KEY") openai_api_key = os.getenv("OPENAI_API_KEY") document_table = "documents" # Initialize Supabase client supabase: Client = create_client(supabase_url, supabase_key) # Initialize embeddings and chat model embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) def download_embeddings(): response = supabase.table(document_table).select("id, embedding, metadata, content").execute() embeddings = [] ids = [] metadatas = [] contents = [] for item in response.data: embedding = json.loads(item['embedding']) embeddings.append(embedding) ids.append(item['id']) metadatas.append(item['metadata']) contents.append(item['content']) return np.array(embeddings, dtype=np.float32), ids, metadatas, contents def create_faiss_index(embeddings): dimension = embeddings.shape[1] index = faiss.IndexFlatIP(dimension) # Use Inner Product for cosine similarity faiss.normalize_L2(embeddings) # Normalize embeddings for cosine similarity index.add(embeddings) return index def save_faiss_index(index, file_path): faiss.write_index(index, file_path) print(f"FAISS index saved to {file_path}") def load_faiss_index(file_path): if os.path.exists(file_path): index = faiss.read_index(file_path) print(f"FAISS index loaded from {file_path}") return index return None def save_metadata(ids, metadatas, contents, file_path): with open(file_path, 'wb') as f: pickle.dump((ids, metadatas, contents), f) print(f"Metadata saved to {file_path}") def load_metadata(file_path): if os.path.exists(file_path): with open(file_path, 'rb') as f: ids, metadatas, contents = pickle.load(f) print(f"Metadata loaded from {file_path}") return ids, metadatas, contents return None, None, None def search_faiss(index, query_vector, k=4): query_vector = np.array(query_vector, dtype=np.float32).reshape(1, -1) faiss.normalize_L2(query_vector) distances, indices = index.search(query_vector, k) return distances[0], indices[0] class FAISSRetriever: def __init__(self, index, ids, metadatas, contents, embeddings_model): self.index = index self.ids = ids self.metadatas = metadatas self.contents = contents self.embeddings_model = embeddings_model def get_relevant_documents(self, query: str, k: int = 4) -> List[Document]: query_vector = self.embeddings_model.embed_query(query) _, indices = search_faiss(self.index, query_vector, k=k) return [ Document(page_content=self.contents[i], metadata=self.metadatas[i]) for i in indices ] def map(self, query_list: List[list]) -> List[Document]: def get_unique_union(documents: List[list]): """ Unique union of retrieved docs """ # Flatten list of lists, and convert each Document to string flattened_docs = [dumps(doc) for sublist in documents for doc in sublist] # Get unique documents unique_docs = list(set(flattened_docs)) # Return return [loads(doc) for doc in unique_docs] documents = [] for query in query_list: if query != "": docs = self.get_relevant_documents(query) documents.extend(docs) return get_unique_union(documents) def load_qa_pairs(): # df = pd.read_csv("../QA_database_rows.csv") response = supabase.table('QA_database').select("Question, Answer").execute() df = pd.DataFrame(response.data) return df['Question'].tolist(), df['Answer'].tolist() def faiss_multiquery(question: str, retriever: FAISSRetriever, llm): generate_queries = multi_query_chain(llm) questions = generate_queries.invoke(question) questions = [item for item in questions if item != ""] # docs = list(map(retriever.get_relevant_documents, questions)) docs = list(map(lambda query: retriever.get_relevant_documents(query, k=4), questions)) docs = [item for sublist in docs for item in sublist] return docs def faiss_query(question: str, retriever: FAISSRetriever, llm, multi_query: bool = False) -> str: if multi_query: docs = faiss_multiquery(question, retriever, llm) # print(docs) else: docs = retriever.get_relevant_documents(question, k=10) # print(docs) context = "\n".join(doc.page_content for doc in docs) template = """ <|begin_of_text|> <|start_header_id|>system<|end_header_id|> 你是一個來自台灣的ESG的AI助理, 請用繁體中文回答問題 \n You should not mention anything about "根據提供的文件內容" or other similar terms. Use five sentences maximum and keep the answer concise. 如果你不知道答案請回答:"很抱歉,目前我無法回答您的問題,請將您的詢問發送至 test@systex.com 以便獲得更進一步的幫助,謝謝。" 勿回答無關資訊 <|eot_id|> <|start_header_id|>user<|end_header_id|> Answer the following question based on this context: {context} Question: {question} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> """ prompt = ChatPromptTemplate.from_template( system_prompt + "\n\n" + template ) # prompt = ChatPromptTemplate.from_template( # system_prompt + "\n\n" + # "Answer the following question based on this context:\n\n" # "{context}\n\n" # "Question: {question}\n" # "Answer in the same language as the question. If you don't know the answer, " # "say 'I'm sorry, I don't have enough information to answer that question.'" # ) # chain = prompt | taide_llm | StrOutputParser() chain = prompt | llm | StrOutputParser() return chain.invoke({"context": context, "question": question}) def create_faiss_retriever(): faiss_index_path = "faiss_index.bin" metadata_path = "faiss_metadata.pkl" index = load_faiss_index(faiss_index_path) ids, metadatas, contents = load_metadata(metadata_path) if index is None or ids is None: print("FAISS index or metadata not found. Creating new index...") print("Downloading embeddings from Supabase...") embeddings_array, ids, metadatas, contents = download_embeddings() print("Creating FAISS index...") index = create_faiss_index(embeddings_array) save_faiss_index(index, faiss_index_path) save_metadata(ids, metadatas, contents, metadata_path) else: print("Using existing FAISS index and metadata.") print("Creating FAISS retriever...") faiss_retriever = FAISSRetriever(index, ids, metadatas, contents, embeddings) return faiss_retriever async def run_evaluation(): faiss_index_path = "faiss_index.bin" metadata_path = "faiss_metadata.pkl" index = load_faiss_index(faiss_index_path) ids, metadatas, contents = load_metadata(metadata_path) if index is None or ids is None: print("FAISS index or metadata not found. Creating new index...") print("Downloading embeddings from Supabase...") embeddings_array, ids, metadatas, contents = download_embeddings() print("Creating FAISS index...") index = create_faiss_index(embeddings_array) save_faiss_index(index, faiss_index_path) save_metadata(ids, metadatas, contents, metadata_path) else: print("Using existing FAISS index and metadata.") print("Creating FAISS retriever...") faiss_retriever = FAISSRetriever(index, ids, metadatas, contents, embeddings) print("Creating original vector store...") original_vector_store = GetVectorStore(embeddings, supabase, document_table) original_retriever = original_vector_store.as_retriever(search_kwargs={"k": 4}) questions, ground_truths = load_qa_pairs() for question, ground_truth in zip(questions, ground_truths): print(f"\nQuestion: {question}") start_time = time() faiss_answer = faiss_query(question, faiss_retriever) faiss_docs = faiss_retriever.get_relevant_documents(question) faiss_time = time() - start_time print(f"FAISS Answer: {faiss_answer}") print(f"FAISS Time: {faiss_time:.4f} seconds") start_time = time() original_answer, original_docs = multi_query(question, original_retriever, chat_history=[]) original_time = time() - start_time print(f"Original Answer: {original_answer}") print(f"Original Time: {original_time:.4f} seconds") # faiss_datasets = { # "question": [question], # "answer": [faiss_answer], # "contexts": [[doc.page_content for doc in faiss_docs]], # "ground_truth": [ground_truth] # } # faiss_evalsets = Dataset.from_dict(faiss_datasets) # faiss_result = evaluate( # faiss_evalsets, # metrics=[ # context_precision, # faithfulness, # answer_relevancy, # context_recall, # ], # ) # print("FAISS RAGAS Evaluation:") # print(faiss_result.to_pandas()) # original_datasets = { # "question": [question], # "answer": [original_answer], # "contexts": [[doc.page_content for doc in original_docs]], # "ground_truth": [ground_truth] # } # original_evalsets = Dataset.from_dict(original_datasets) # original_result = evaluate( # original_evalsets, # metrics=[ # context_precision, # faithfulness, # answer_relevancy, # context_recall, # ], # ) # print("Original RAGAS Evaluation:") # print(original_result.to_pandas()) print("\nPerformance comparison complete.") async def ask_question(): faiss_index_path = "faiss_index.bin" metadata_path = "faiss_metadata.pkl" index = load_faiss_index(faiss_index_path) ids, metadatas, contents = load_metadata(metadata_path) if index is None or ids is None: print("FAISS index or metadata not found. Creating new index...") print("Downloading embeddings from Supabase...") embeddings_array, ids, metadatas, contents = download_embeddings() print("Creating FAISS index...") index = create_faiss_index(embeddings_array) save_faiss_index(index, faiss_index_path) save_metadata(ids, metadatas, contents, metadata_path) else: print("Using existing FAISS index and metadata.") print("Creating FAISS retriever...") faiss_retriever = FAISSRetriever(index, ids, metadatas, contents, embeddings) # print("Creating original vector store...") # original_vector_store = GetVectorStore(embeddings, supabase, document_table) # original_retriever = original_vector_store.as_retriever(search_kwargs={"k": 4}) # questions, ground_truths = load_qa_pairs() # for question, ground_truth in zip(questions, ground_truths): question = "" while question != "exit": question = input("Question: ") print(f"\nQuestion: {question}") start_time = time() faiss_answer = faiss_query(question, faiss_retriever) faiss_docs = faiss_retriever.get_relevant_documents(question) faiss_time = time() - start_time print(f"FAISS Answer: {faiss_answer}") print(f"FAISS Time: {faiss_time:.4f} seconds") # start_time = time() # original_answer, original_docs = multi_query(question, original_retriever, chat_history=[]) # original_time = time() - start_time # print(f"Original Answer: {original_answer}") # print(f"Original Time: {original_time:.4f} seconds") if __name__ == "__main__": global_retriever = create_faiss_retriever() questions, ground_truths = load_qa_pairs() results = [] for question, ground_truth in zip(questions, ground_truths): # For multi_query=True start = time() final_answer_multi = faiss_query(question, global_retriever, multi_query=True) processing_time_multi = time() - start # print(final_answer_multi) # print(processing_time_multi) # For multi_query=False start = time() final_answer_single = faiss_query(question, global_retriever, multi_query=False) processing_time_single = time() - start # print(final_answer_single) # print(processing_time_single) # Store results in a dictionary result = { "question": question, "ground_truth": ground_truth, "final_answer_multi_query": final_answer_multi, "processing_time_multi_query": processing_time_multi, "final_answer_single_query": final_answer_single, "processing_time_single_query": processing_time_single } print(result) results.append(result) with open('qa_results.json', 'a', encoding='utf8') as outfile: json.dump(result, outfile, indent=4, ensure_ascii=False) outfile.write("\n") # Ensure each result is on a new line # Save results to a JSON file with open('qa_results+all.json', 'w', encoding='utf8') as outfile: json.dump(results, outfile, indent=4, ensure_ascii=False) print('All questions done!') # question = "" # while question != "exit": # # question = "國家溫室氣體長期減量目標" # question = input("Question: ") # if question.strip().lower == "exit": break # start = time() # final_answer = faiss_query(question, global_retriever, multi_query=True) # print(final_answer) # processing_time = time() - start # print(processing_time) # start = time() # final_answer = faiss_query(question, global_retriever, multi_query=False) # print(final_answer) # processing_time = time() - start # print(processing_time) # print("Chatbot closed!") # asyncio.run(ask_question())