from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import JsonOutputParser from langchain_core.prompts import PromptTemplate from langchain.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser # graph usage from pprint import pprint from typing import List from langchain_core.documents import Document from typing_extensions import TypedDict from langgraph.graph import END, StateGraph, START from langgraph.pregel import RetryPolicy # supabase db from langchain_community.utilities import SQLDatabase import os from dotenv import load_dotenv load_dotenv() URI: str = os.environ.get('SUPABASE_URI') db = SQLDatabase.from_uri(URI) # LLM # local_llm = "llama3.1:8b-instruct-fp16" local_llm = "llama3-groq-tool-use:latest" llm_json = ChatOllama(model=local_llm, format="json", temperature=0) llm = ChatOllama(model=local_llm, temperature=0) # RAG usage from faiss_index import create_faiss_retriever, faiss_query retriever = create_faiss_retriever() # text-to-sql usage from text_to_sql2 import run, get_query, query_to_nl, table_description def faiss_query(question: str, docs, llm, multi_query: bool = False) -> str: context = docs system_prompt: str = "你是一個來自台灣的AI助理,樂於以台灣人的立場幫助使用者,會用繁體中文回答問題。" template = """ <|begin_of_text|> <|start_header_id|>system<|end_header_id|> 你是一個來自台灣的ESG的AI助理,請用繁體中文回答問題 \n You should not mention anything about "根據提供的文件內容" or other similar terms. Use five sentences maximum and keep the answer concise. 如果你不知道答案請回答:"很抱歉,目前我無法回答您的問題,請將您的詢問發送至 test@systex.com 以便獲得更進一步的幫助,謝謝。" 勿回答無關資訊 <|eot_id|> <|start_header_id|>user<|end_header_id|> Answer the following question based on this context: {context} Question: {question} 用繁體中文 <|eot_id|> <|start_header_id|>assistant<|end_header_id|> """ prompt = ChatPromptTemplate.from_template( system_prompt + "\n\n" + template ) rag_chain = prompt | llm | StrOutputParser() return rag_chain.invoke({"context": context, "question": question}) ### Hallucination Grader def Hallucination_Grader(): # Prompt prompt = PromptTemplate( template=""" <|begin_of_text|><|start_header_id|>system<|end_header_id|> You are a grader assessing whether an answer is grounded in / supported by a set of facts. Give 'yes' or 'no' score to indicate whether the answer is grounded in / supported by a set of facts. Provide 'yes' or 'no' score as a JSON with a single key 'score' and no preamble or explanation. Return the a JSON with a single key 'score' and no premable or explanation. <|eot_id|><|start_header_id|>user<|end_header_id|> Here are the facts: \n ------- \n {documents} \n ------- \n Here is the answer: {generation} Provide 'yes' or 'no' score as a JSON with a single key 'score' and no premable or explanation. <|eot_id|><|start_header_id|>assistant<|end_header_id|>""", input_variables=["generation", "documents"], ) hallucination_grader = prompt | llm_json | JsonOutputParser() return hallucination_grader ### Answer Grader def Answer_Grader(): # Prompt prompt = PromptTemplate( template=""" <|begin_of_text|><|start_header_id|>system<|end_header_id|> You are a grader assessing whether an answer is useful to resolve a question. Give a binary score 'yes' or 'no' to indicate whether the answer is useful to resolve a question. Provide the binary score as a JSON with a single key 'score' and no preamble or explanation. <|eot_id|><|start_header_id|>user<|end_header_id|> Here is the answer: \n ------- \n {generation} \n ------- \n Here is the question: {question} <|eot_id|><|start_header_id|>assistant<|end_header_id|>""", input_variables=["generation", "question"], ) answer_grader = prompt | llm_json | JsonOutputParser() return answer_grader # Text-to-SQL def run_text_to_sql(question: str): selected_table = ['104_112碳排放公開及建準資料', '水電使用量(GHG)', '水電使用量(ISO)'] # question = "建準去年的固定燃燒總排放量是多少?" query, result, answer = run(db, question, selected_table, llm) return answer, query def _get_query(question: str): selected_table = ['104_112碳排放公開及建準資料', '水電使用量(GHG)', '水電使用量(ISO)'] query = get_query(db, question, selected_table, llm) return query def _query_to_nl(question: str, query: str): answer = query_to_nl(db, question, query, llm) return answer ### SQL Grader def SQL_Grader(): prompt = PromptTemplate( template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are a SQL query grader assessing correctness of PostgreSQL query to a user question. Based on following database description, you need to grade whether the PostgreSQL query exactly matches the user question. Here is database description: {table_info} You need to check that each where statement is correctly filtered out what user question need. For example, if user question is "建準去年的固定燃燒總排放量是多少?", and the PostgreSQL query is "SELECT SUM("排放量(公噸CO2e)") AS "下游租賃總排放量" FROM "104_112碳排放公開及建準資料" WHERE "事業名稱" like '%建準%' AND "排放源" = '下游租賃' AND "盤查標準" = 'GHG' AND "年度" = EXTRACT(YEAR FROM CURRENT_DATE)-1;" For the above example, we can find that user asked for "固定燃燒", but the PostgreSQL query gives "排放源" = '下游租賃' in WHERE statement, which means the PostgreSQL query is incorrect for the user question. Another example like "建準去年的固定燃燒總排放量是多少?", and the PostgreSQL query is "SELECT SUM("排放量(公噸CO2e)") AS "固定燃燒總排放量" FROM "104_112碳排放公開及建準資料" WHERE "事業名稱" like '%台積電%' AND "排放源" = '固定燃燒' AND "盤查標準" = 'GHG' AND "年度" = EXTRACT(YEAR FROM CURRENT_DATE)-1;" For the above example, we can find that user asked for "建準", but the PostgreSQL query gives "事業名稱" like '%台積電%' in WHERE statement, which means the PostgreSQL query is incorrect for the user question. and so on. You need to strictly examine whether the sql PostgreSQL query matches the user question. If the PostgreSQL query do not exactly matches the user question, grade it as incorrect. You need to strictly examine whether the sql PostgreSQL query matches the user question. Give a binary score 'yes' or 'no' score to indicate whether the PostgreSQL query is correct to the question. \n Provide the binary score as a JSON with a single key 'score' and no premable or explanation. <|eot_id|> <|start_header_id|>user<|end_header_id|> Here is the PostgreSQL query: \n\n {sql_query} \n\n Here is the user question: {question} \n <|eot_id|><|start_header_id|>assistant<|end_header_id|> """, input_variables=["table_info", "question", "sql_query"], ) sql_query_grader = prompt | llm_json | JsonOutputParser() return sql_query_grader ### Router def Router(): prompt = PromptTemplate( template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are an expert at routing a user question to a vectorstore or company private data. Use company private data for questions about the informations about a company's greenhouse gas emissions data. Otherwise, use the vectorstore for questions on ESG field knowledge or news about ESG. You do not need to be stringent with the keywords in the question related to these topics. Give a binary choice 'company_private_data' or 'vectorstore' based on the question. Return the a JSON with a single key 'datasource' and no premable or explanation. Question to route: {question} <|eot_id|><|start_header_id|>assistant<|end_header_id|>""", input_variables=["question"], ) question_router = prompt | llm_json | JsonOutputParser() return question_router class GraphState(TypedDict): """ Represents the state of our graph. Attributes: question: question generation: LLM generation company_private_data: whether to search company private data documents: list of documents """ question: str generation: str documents: List[str] retry: int sql_query: str # Node def retrieve_and_generation(state): """ Retrieve documents from vectorstore Args: state (dict): The current graph state Returns: state (dict): New key added to state, documents, that contains retrieved documents, and generation, genrating by LLM """ print("---RETRIEVE---") question = state["question"] # Retrieval # documents = retriever.invoke(question) # TODO: correct Retrieval function documents = retriever.get_relevant_documents(question, k=30) # docs_documents = "\n\n".join(doc.page_content for doc in documents) # print(documents) generation = faiss_query(question, documents, llm) return {"documents": documents, "question": question, "generation": generation} def company_private_data_get_sql_query(state): """ Get PostgreSQL query according to question Args: state (dict): The current graph state Returns: state (dict): return generated PostgreSQL query and record retry times """ print("---SQL QUERY---") question = state["question"] if state["retry"]: retry = state["retry"] retry += 1 else: retry = 0 # print("RETRY: ", retry) sql_query = _get_query(question) return {"sql_query": sql_query, "question": question, "retry": retry} def company_private_data_search(state): """ Execute PostgreSQL query and convert to nature language. Args: state (dict): The current graph state Returns: state (dict): Appended sql results to state """ print("---SQL TO NL---") # print(state) question = state["question"] sql_query = state["sql_query"] generation = _query_to_nl(question, sql_query) # generation = [company_private_data_result] return {"sql_query": sql_query, "question": question, "generation": generation} ### Conditional edge def route_question(state): """ Route question to web search or RAG. Args: state (dict): The current graph state Returns: str: Next node to call """ print("---ROUTE QUESTION---") question = state["question"] # print(question) question_router = Router() source = question_router.invoke({"question": question}) # print(source) print(source["datasource"]) if source["datasource"] == "company_private_data": print("---ROUTE QUESTION TO TEXT-TO-SQL---") return "company_private_data" elif source["datasource"] == "vectorstore": print("---ROUTE QUESTION TO RAG---") return "vectorstore" def grade_generation_v_documents_and_question(state): """ Determines whether the generation is grounded in the document and answers question. Args: state (dict): The current graph state Returns: str: Decision for next node to call """ print("---CHECK HALLUCINATIONS---") question = state["question"] documents = state["documents"] generation = state["generation"] # print(docs_documents) # print(generation) hallucination_grader = Hallucination_Grader() score = hallucination_grader.invoke( {"documents": documents, "generation": generation} ) # print(score) grade = score["score"] # Check hallucination if grade in ["yes", "true", 1, "1"]: print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---") # Check question-answering print("---GRADE GENERATION vs QUESTION---") answer_grader = Answer_Grader() score = answer_grader.invoke({"question": question, "generation": generation}) grade = score["score"] if grade in ["yes", "true", 1, "1"]: print("---DECISION: GENERATION ADDRESSES QUESTION---") return "useful" else: print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---") return "not useful" else: pprint("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---") return "not supported" def grade_sql_query(state): """ Determines whether the Postgresql query are correct to the question Args: state (dict): The current graph state Returns: state (dict): Decision for retry or continue """ print("---CHECK SQL CORRECTNESS TO QUESTION---") question = state["question"] sql_query = state["sql_query"] retry = state["retry"] # Score each doc sql_query_grader = SQL_Grader() score = sql_query_grader.invoke({"table_info": table_description(), "question": question, "sql_query": sql_query}) grade = score["score"] # Document relevant if grade in ["yes", "true", 1, "1"]: print("---GRADE: CORRECT SQL QUERY---") return "correct" elif retry >= 5: print("---GRADE: INCORRECT SQL QUERY AND REACH RETRY LIMIT---") return "failed" else: print("---GRADE: INCORRECT SQL QUERY---") return "incorrect" def build_graph(): workflow = StateGraph(GraphState) # Define the nodes workflow.add_node("company_private_data_query", company_private_data_get_sql_query, retry=RetryPolicy(max_attempts=5)) # web search workflow.add_node("company_private_data_search", company_private_data_search, retry=RetryPolicy(max_attempts=5)) # web search workflow.add_node("retrieve_and_generation", retrieve_and_generation, retry=RetryPolicy(max_attempts=5)) # retrieve workflow.add_conditional_edges( START, route_question, { "company_private_data": "company_private_data_query", "vectorstore": "retrieve_and_generation", }, ) workflow.add_conditional_edges( "retrieve_and_generation", grade_generation_v_documents_and_question, { "not supported": "retrieve_and_generation", "useful": END, "not useful": "retrieve_and_generation", }, ) workflow.add_conditional_edges( "company_private_data_query", grade_sql_query, { "correct": "company_private_data_search", "incorrect": "company_private_data_query", "failed": END }, ) workflow.add_edge("company_private_data_search", END) app = workflow.compile() return app def main(): app = build_graph() #建準去年的類別一排放量? inputs = {"question": "溫室氣體是什麼"} for output in app.stream(inputs, {"recursion_limit": 10}): for key, value in output.items(): pprint(f"Finished running: {key}:") pprint(value["generation"]) return value["generation"] if __name__ == "__main__": result = main() print("------------------------------------------------------") print(result)