add_vectordb.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. from dotenv import load_dotenv
  2. load_dotenv()
  3. from langchain_openai import OpenAIEmbeddings
  4. from langchain_community.vectorstores import Chroma
  5. from langchain_community.document_loaders import TextLoader
  6. from langchain_text_splitters import RecursiveCharacterTextSplitter
  7. from langchain_community.document_loaders import PyPDFLoader
  8. from langchain_community.document_loaders import Docx2txtLoader
  9. import os
  10. import glob
  11. from langchain_community.vectorstores import SupabaseVectorStore
  12. from langchain_openai import OpenAIEmbeddings
  13. from supabase.client import Client, create_client
  14. def get_data_list(data_list=None, path=None, extension=None, update=False):
  15. files = data_list or glob.glob(os.path.join(path, f"*.{extension}"))
  16. if update:
  17. doc = files.copy()
  18. else:
  19. existed_data = check_existed_data(supabase)
  20. doc = []
  21. for file_path in files:
  22. filename = os.path.basename(file_path)
  23. if filename not in existed_data:
  24. doc.append(file_path)
  25. return doc
  26. def read_and_split_files(data_list=None, path=None, extension=None, update=False):
  27. def load_and_split(file_list):
  28. chunks = []
  29. for file in file_list:
  30. if file.endswith(".txt"):
  31. loader = TextLoader(file, encoding='utf-8')
  32. elif file.endswith(".pdf"):
  33. loader = PyPDFLoader(file)
  34. elif file.endswith(".docx"):
  35. loader = Docx2txtLoader(file)
  36. else:
  37. print(f"Unsupported file extension: {file}")
  38. continue
  39. docs = loader.load()
  40. # Split
  41. if file.endswith(".docx"):
  42. separators = ['\u25cb\s*第.*?條', '\u25cf\s*第.*?條']
  43. text_splitter = RecursiveCharacterTextSplitter(is_separator_regex=True, separators=separators, chunk_size=300, chunk_overlap=0)
  44. else:
  45. text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=500, chunk_overlap=0)
  46. splits = text_splitter.split_documents(docs)
  47. chunks.extend(splits)
  48. return chunks
  49. doc = get_data_list(data_list=data_list, path=path, extension=extension, update=update)
  50. # Index
  51. docs = load_and_split(doc)
  52. return docs
  53. def create_ids(docs):
  54. # Create a dictionary to count occurrences of each page in each document
  55. page_counter = {}
  56. # List to store the resulting IDs
  57. document_ids = []
  58. # Generate IDs
  59. for doc in [docs[i].metadata for i in range(len(docs))]:
  60. source = doc['source']
  61. file_name = os.path.basename(source).split('.')[0]
  62. if "page" in doc.keys():
  63. page = doc['page']
  64. key = f"{source}_{page}"
  65. else:
  66. key = f"{source}"
  67. if key not in page_counter:
  68. page_counter[key] = 1
  69. else:
  70. page_counter[key] += 1
  71. if "page" in doc.keys():
  72. doc_id = f"{file_name} | page {page} | chunk {page_counter[key]}"
  73. else:
  74. doc_id = f"{file_name} | chunk {page_counter[key]}"
  75. document_ids.append(doc_id)
  76. return document_ids
  77. def get_document(data_list=None, path=None, extension=None, update=False):
  78. docs = read_and_split_files(data_list=data_list, path=path, extension=extension, update=update)
  79. document_ids = create_ids(docs)
  80. for doc in docs:
  81. doc.metadata['source'] = os.path.basename(doc.metadata['source'])
  82. # print(doc.metadata)
  83. # document_metadatas = [{'source': doc.metadata['source'], 'page': doc.metadata['page'], 'chunk': int(id.split("chunk ")[-1])} for doc, id in zip(docs, document_ids)]
  84. document_metadatas = []
  85. for doc, id in zip(docs, document_ids):
  86. chunk_number = int(id.split("chunk ")[-1])
  87. doc.metadata['chunk'] = chunk_number
  88. doc.metadata['extension'] = os.path.basename(doc.metadata['source']).split(".")[-1]
  89. document_metadatas.append(doc.metadata)
  90. documents = [docs.metadata['source'].split(".")[0] + docs.page_content for docs in docs]
  91. return document_ids, documents, document_metadatas
  92. def check_existed_data(supabase):
  93. response = supabase.table('documents').select("id, metadata").execute()
  94. existed_data = list(set([data['metadata']['source'] for data in response.data]))
  95. # existed_data = [(data['id'], data['metadata']['source']) for data in response.data]
  96. return existed_data
  97. class GetVectorStore(SupabaseVectorStore):
  98. def __init__(self, embeddings, supabase, table_name):
  99. super().__init__(embedding=embeddings, client=supabase, table_name=table_name, query_name="match_documents")
  100. def insert(self, documents, document_metadatas):
  101. self.add_texts(
  102. texts=documents,
  103. metadatas=document_metadatas,
  104. )
  105. def delete(self, file_list):
  106. for file_name in file_list:
  107. self._client.table(self.table_name).delete().eq('metadata->>source', file_name).execute()
  108. def update(self, documents, document_metadatas, update_existing_data=False):
  109. if not document_metadatas: # no new data
  110. return
  111. if update_existing_data:
  112. file_list = list(set(metadata['source'] for metadata in document_metadatas))
  113. self.delete(file_list)
  114. self.insert(documents, document_metadatas)
  115. if __name__ == "__main__":
  116. load_dotenv()
  117. supabase_url = os.environ.get("SUPABASE_URL")
  118. supabase_key = os.environ.get("SUPABASE_KEY")
  119. document_table = "documents"
  120. supabase: Client = create_client(supabase_url, supabase_key)
  121. embeddings = OpenAIEmbeddings()
  122. ###################################################################################
  123. # get vector store
  124. vector_store = GetVectorStore(embeddings, supabase, document_table)
  125. ###################################################################################
  126. # update data (old + new / all new / all old)
  127. path = "/home/mia/systex/Documents"
  128. extension = "pdf"
  129. # file = None
  130. # file_list = ["溫室氣體排放量盤查作業指引113年版.pdf"]
  131. # file = [os.path.join(path, file) for file in file_list]
  132. file_list = glob.glob(os.path.join(path, "*"))
  133. print(file_list)
  134. update = False
  135. document_ids, documents, document_metadatas = get_document(data_list=file_list, path=path, extension=extension, update=update)
  136. vector_store.update(documents, document_metadatas, update_existing_data=update)
  137. ###################################################################################
  138. # insert new data (all new)
  139. # vector_store.insert(documents, document_metadatas)
  140. ###################################################################################
  141. # delete data
  142. # file_list = ["溫室氣體排放量盤查作業指引113年版.pdf"]
  143. # vector_store.delete(file_list)
  144. ###################################################################################
  145. # get retriver
  146. # retriever = vector_store.as_retriever(search_kwargs={"k": 6})