123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- import re
- from dotenv import load_dotenv
- load_dotenv()
- from langchain_community.utilities import SQLDatabase
- import os
- URI: str = os.environ.get('SUPABASE_URI')
- db = SQLDatabase.from_uri(URI)
- # print(db.dialect)
- # print(db.get_usable_table_names())
- # db.run('SELECT * FROM "2022 清冊數據(GHG)" LIMIT 10;')
- context = db.get_context()
- # print(list(context))
- # print(context["table_info"])
- from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
- from langchain.chains import create_sql_query_chain
- from langchain_community.llms import Ollama
- from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool
- from operator import itemgetter
- from langchain_core.output_parsers import StrOutputParser
- from langchain_core.prompts import PromptTemplate
- from langchain_core.runnables import RunnablePassthrough
- # Load model directly
- from transformers import AutoTokenizer, AutoModelForCausalLM
- from transformers import AutoModelForCausalLM, AutoTokenizer,pipeline
- import torch
- from langchain_huggingface import HuggingFacePipeline
- # Load model directly
- from transformers import AutoTokenizer, AutoModelForCausalLM
- # model_id = "defog/llama-3-sqlcoder-8b"
- # tokenizer = AutoTokenizer.from_pretrained(model_id)
- # sql_llm = HuggingFacePipeline.from_model_id(
- # model_id=model_id,
- # task="text-generation",
- # model_kwargs={"torch_dtype": torch.bfloat16},
- # pipeline_kwargs={"return_full_text": False},
- # device=0, device_map='cuda')
- ##########################################################################################
- from langchain_community.chat_models import ChatOllama
- # local_llm = "llama3-groq-tool-use:latest"
- local_llm = "llama3-groq-tool-use:latest"
- llm = ChatOllama(model=local_llm, temperature=0)
- ##########################################################################################
- # model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
- # tokenizer = AutoTokenizer.from_pretrained(model_id)
- # llm = HuggingFacePipeline.from_model_id(
- # model_id=model_id,
- # task="text-generation",
- # model_kwargs={"torch_dtype": torch.bfloat16},
- # pipeline_kwargs={"return_full_text": False,
- # "max_new_tokens": 512},
- # device=0, device_map='cuda')
- # print(llm.pipeline)
- # llm.pipeline.tokenizer.pad_token_id = llm.pipeline.model.config.eos_token_id[0]
- ##########################################################################################
- # model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
- # pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=500, top_k=50, temperature=0.1,
- # model_kwargs={"torch_dtype": torch.bfloat16, "return_full_text": False})
- #, device="auto", load_in_4bit=True
- # llm = HuggingFacePipeline(pipeline=pipe)
- # llm = HuggingFacePipeline(pipeline=pipe)
- # llm = Ollama(model = "llama3-groq-tool-use:latest", num_gpu=1)
- def get_examples():
- examples = [
- {
- "input": "建準廣興廠去年的類別1總排放量是多少?",
- "query": """SELECT SUM("排放量(公噸CO2e)") AS "類別1總排放量"
- FROM "104_112碳排放公開及建準資料"
- WHERE "事業名稱" like '%建準%'
- AND "事業名稱" like '%廣興廠%'
- AND "類別" = '類別1-直接排放'
- AND "盤查標準" = 'GHG'
- AND "年度" = EXTRACT(YEAR FROM CURRENT_DATE)-1;""",
- },
- {
- "input": "建準台北辦事處2022年的能源間接排放總排放量是多少?",
- "query": """SELECT SUM("排放量(公噸CO2e)") AS "直接排放總排放量"
- FROM "104_112碳排放公開及建準資料"
- WHERE "事業名稱" like '%建準%'
- AND "事業名稱" like '%台北辦事處%'
- AND "類別" = '類別2-能源間接排放'
- AND "盤查標準" = 'GHG'
- AND "年度" = 2022;""",
- },
- {
- "input": "建準去年的固定燃燒總排放量是多少?",
- "query": """SELECT SUM("排放量(公噸CO2e)") AS "固定燃燒總排放量"
- FROM "104_112碳排放公開及建準資料"
- WHERE "事業名稱" like '%建準%'
- AND "排放源" = '固定燃燒'
- AND "盤查標準" = 'GHG'
- AND "年度" = EXTRACT(YEAR FROM CURRENT_DATE)-1;""",
- },
- {
- "input": "台積電2022年的類別1總排放量是多少?",
- "query": """SELECT SUM("排放量(公噸CO2e)") AS "台積電2022年類別1總排放量"
- FROM "104_112碳排放公開及建準資料"
- WHERE "事業名稱" like '%台灣積體電路製造股份有限公司%'
- AND "類別" = '類別1-直接排放'
- AND "年度" = 2022;""",
- },
- ]
- return examples
- def table_description():
- database_description = (
- "The database consists of following table: `104_112碳排放公開及建準資料`, `水電使用量(ISO)` and `水電使用量(GHG)`. "
- "This is a PostgreSQL database, so you need to use postgres-related queries.\n\n"
- "The `104_112碳排放公開及建準資料` table 描述了不同事業單位或廠房分別在 ISO 14064-1:2018 與 GHG Protocol 標準下的溫室氣體排放量,並依類別1至類別6劃分。"
- "It includes the following columns:\n"
- "- `年度`: 盤查年度\n"
- "- `類別`: 溫室氣體的排放類別,包含以下:\n"
- " \t*類別1-直接排放\n"
- " \t*類別2-能源間接排放\n"
- " \t*類別3-運輸間接排放\n"
- " \t*類別4-組織使用產品間接排放\n"
- " \t*類別5-使用來自組織產品間接排放\n"
- " \t*類別6\n"
- "- `排放源`: `類別`欄位進一步劃分的細項\n"
- "- `排放量(公噸CO2e)`: 溫室氣體排放量\n"
- "- `盤查標準`: ISO or GHG\n"
-
- "The `水電使用量(ISO)` and `水電使用量(GHG)` table 描述了不同廠房分別在 ISO 14064-1:2018 與 GHG Protocol 標準下的水電使用量,包含'外購電力 度數 (kwh)'與'自來水 度數 (立方公尺 m³)'。"
- "The `public.departments_table` table contains information about the various departments in the company. It includes:\n"
- "- `外購電力(灰電)`: 灰電(火力發電、核能發電等)的外購電力度數(kwh)\n"
- "- `外購電力(綠電)`: 綠電(太陽光電)的外購電力度數(kwh)\n"
- "- `自產電力(綠電)`: 綠電(太陽光電)的自產電力度數(kwh)\n"
- "- `用水量`: 自來水的使用度數(m³)\n\n"
- )
- return database_description
- def write_query_chain(db, llm):
- template = """
- <|begin_of_text|>
-
- <|start_header_id|>system<|end_header_id|>
- Generate a SQL query to answer this question: `{input}`
- You are a PostgreSQL expert in ESG field. Given an input question, first create a syntactically correct PostgreSQL query to run,
- then look at the results of the query and return the answer to the input question.\n\
- Unless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using the LIMIT clause as per PostgreSQL.
- You can order the results to return the most informative data in the database.\n\
- Never query for all columns from a table. You must query only the columns that are needed to answer the question.
- Wrap each column name in Quotation Mark (") to denote them as delimited identifiers.\n\
-
- ***Pay attention to only return query for PostgreSQL WITHOUT "```sql", And DO NOT content any other words.\n\
- ***Pay attention to only return PostgreSQL query and no premable or explanation.\n\
- <|eot_id|>
-
- <|begin_of_text|><|start_header_id|>user<|end_header_id|>
- DDL statements:
- {table_info}
- database description:
- {database_description}
- Provide ONLY PostgreSQL query and NO premable or explanation!
- Below are a number of examples of questions and their corresponding SQL queries.\n\
-
- <|eot_id|>
-
- <|start_header_id|>assistant<|end_header_id|>
- """
- # prompt_template = PromptTemplate.from_template(template)
- example_prompt = PromptTemplate.from_template("The following SQL query best answers the question `{input}`:\nSQL query: {query}")
- prompt = FewShotPromptTemplate(
- examples=get_examples(),
- example_prompt=example_prompt,
- prefix=template,
- suffix="User input: {input}\nSQL query: ",
- input_variables=["input", "top_k", "table_info"],
- )
- # llm = Ollama(model = "sqlcoder", num_gpu=1)
- # llm = HuggingFacePipeline(pipeline=pipe)
-
-
- write_query = create_sql_query_chain(llm, db, prompt)
- return write_query
- def sql_to_nl_chain(llm):
- # llm = Ollama(model = "llama3.1", num_gpu=1)
- # llm = Ollama(model = "llama3.1:8b-instruct-q2_K", num_gpu=1)
- # llm = Ollama(model = "llama3-groq-tool-use:latest", num_gpu=1)
- answer_prompt = PromptTemplate.from_template(
- """
- <|begin_of_text|>
- <|begin_of_text|><|start_header_id|>system<|end_header_id|>
- Given the following user question, corresponding SQL query, and SQL result, answer the user question.
- 根據使用者的問題、對應的 SQL 查詢和 SQL 結果,以繁體中文回答使用者問題。
-
- <|eot_id|>
- <|begin_of_text|><|start_header_id|>user<|end_header_id|>
- Question: {question}
- SQL Query: {query}
- SQL Result: {result}
- Answer:
- <|eot_id|>
-
- <|start_header_id|>assistant<|end_header_id|>
-
- """
- )
- # llm = Ollama(model = "llama3-groq-tool-use:latest", num_gpu=1)
- chain = answer_prompt | llm | StrOutputParser()
- return chain
- def get_query(db, question, selected_table, llm):
- write_query = write_query_chain(db, llm)
- query = write_query.invoke({"question": question, 'table_names_to_use': selected_table, "top_k": 1000, "table_info":context["table_info"], "database_description": table_description()})
-
- query = re.split('SQL query: ', query)[-1]
- query = query.replace("104_112碰排放公開及建準資料","104_112碳排放公開及建準資料")
- print(query)
-
- return query
- def query_to_nl(db, question, query, llm):
- execute_query = QuerySQLDataBaseTool(db=db)
- result = execute_query.invoke(query)
- print(result)
- chain = sql_to_nl_chain(llm)
- answer = chain.invoke({"question": question, "query": query, "result": result})
- return answer
- def run(db, question, selected_table, llm):
- write_query = write_query_chain(db, llm)
- query = write_query.invoke({"question": question, 'table_names_to_use': selected_table, "top_k": 1000, "table_info":context["table_info"], "database_description": table_description()})
-
- query = re.split('SQL query: ', query)[-1]
- query = query.replace("104_112碰排放公開及建準資料","104_112碳排放公開及建準資料")
- print(query)
- execute_query = QuerySQLDataBaseTool(db=db)
- result = execute_query.invoke(query)
- print(result)
- chain = sql_to_nl_chain(llm)
- answer = chain.invoke({"question": question, "query": query, "result": result})
- return query, result, answer
- if __name__ == "__main__":
- import time
-
- start = time.time()
-
- selected_table = ['104_112碳排放公開及建準資料']
- question = "建準去年的固定燃燒總排放量是多少?"
- question = "台積電2022年的直接排放總排放量是多少?"
- query, result, answer = run(db, question, selected_table, llm)
- print("question: ", question)
- print("query: ", query)
- print("result: ", result)
- print("answer: ", answer)
-
- print(time.time()-start)
|