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FastSpeech 2 - PyTorch Implementation

This is a PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast
and High-Quality End-to-End Text to Speech. This project is based on xcmyz's
implementation of FastSpeech. Feel free to use/modify the code.

There are several versions of FastSpeech 2. This implementation is more similar to version 1,
which uses FO values as the pitch features. On the other hand, pitch spectrograms extracted
by continuous wavelet transform are used as the pitch features in the later versions.
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Figure 1: The overall architecture for FastSpeech 2 and 2s. LR in subfigure (b) denotes the length
regulator operation proposed in FastSpeech. LN in subfigure (c) denotes layer normalization. Variance
predictor represents duration/pitch/energy predictor.

Updates

e 2021/7/8: Release the checkpoint and audio samples of a multi-speaker English TTS
model trained on LibriTTS

e 2021/2/26: Support English and Mandarin TTS
e 2021/2/26: Support multi-speaker TTS (AISHELL-3 and LibriTTS)
e 2021/2/26: Support MelGAN and HiFi-GAN vocoder

Audio Samples

Audio samples generated by this implementation can be found here.

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt
Inference
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You have to download the pretrained models and put them in output/ckpt/LISpeech/ ,
output/ckpt/AISHELL3 , Or output/ckpt/LibriTTS/ .

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED _TEXT" --restore_step 900000 --mode
single -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t
config/LJSpeech/train.yaml

For Mandarin multi-speaker TTS, try

python3 synthesize.py --text "AZK{F" --speaker_id SPEAKER_ID --restore_step 600000
--mode single -p config/AISHELL3/preprocess.yaml -m config/AISHELL3/model.yaml -t
config/AISHELL3/train.yaml

For English multi-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --speaker_id SPEAKER_ID --
restore_step 800000 --mode single -p config/LibriTTS/preprocess.yaml -m
config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

The generated utterances will be put in output/result/ .

Here is an example of synthesized mel-spectrogram of the sentence "Printing, in the only
sense with which we are at present concerned, differs from most if not from all the arts and
crafts represented in the Exhibition", with the English single-speaker TTS model.

Synthetized Spectrogram

Energy
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Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LJSpeech/val.txt --restore_step
900000 --mode batch -p config/LJSpeech/preprocess.yaml -m
config/LISpeech/model.yaml -t config/LJSpeech/train.yaml

https://github.com/ming024/FastSpeech2 3/8



2021/8/23 GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

to synthesize all utterances in preprocessed_data/LJISpeech/val.txt

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by
specifying the desired pitch/energy/duration ratios. For example, one can increase the
speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED TEXT" --restore_step 900000 --mode
single -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t
config/LJSpeech/train.yaml --duration_control 0.8 --energy control 0.8

Training

Datasets

The supported datasets are

e LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a
female speaker reading passages from 7 non-fiction books, approximately 24 hours in
total.

e AISHELL-3: a Mandarin TTS dataset with 218 male and female speakers, roughly 85
hours in total.

e LibriTTS: a multi-speaker English dataset containing 585 hours of speech by 2456
speakers.

We take LJSpeech as an example hereafter.

Preprocessing

First, run

python3 prepare_align.py config/LJSpeech/preprocess.yaml

for some preparations.

As described in the paper, Montreal Forced Aligner (MFA) is used to obtain the alignments
between the utterances and the phoneme sequences. Alignments of the supported datasets
are provided here. You have to unzip the files in preprocessed_data/LISpeech/TextGrid/ .

After that, run the preprocessing script by
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python3 preprocess.py config/LJSpeech/preprocess.yaml

Alternately, you can align the corpus by yourself. Download the official MFA package and
run

./montreal-forced-aligner/bin/mfa_align raw_data/LJSpeech/ lexicon/librispeech-
lexicon.txt english preprocessed_data/LJSpeech

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LJSpeech/
lexicon/librispeech-1lexicon.txt preprocessed_data/LJISpeech

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LJISpeech/preprocess.yaml

Training
Train your model with

python3 train.py -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml
-t config/LJSpeech/train.yaml

The model takes less than 10k steps (less than 1 hour on my GTX1080Ti GPU) of training to
generate audio samples with acceptable quality, which is much more efficient than the
autoregressive models such as Tacotron2.

TensorBoard

Use

tensorboard --logdir output/log/LJISpeech

to serve TensorBoard on your localhost. The loss curves, synthesized mel-spectrograms, and
audios are shown.
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e Following xcmyz's implementation, | use an additional Tacotron-2-styled Post-Net after
the decoder, which is not used in the original FastSpeech 2.
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e Gradient clipping is used in the training.

¢ In my experience, using phoneme-level pitch and energy prediction instead of frame-
level prediction results in much better prosody, and normalizing the pitch and energy
features also helps. Please refer to config/README.md for more details.

Please inform me if you find any mistakes in this repo, or any useful tips to train the
FastSpeech 2 model.
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