2021/8/23 GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

E ming024 / FastSpeech?2

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to
Speech”

&8 MIT License
¥¢ 545stars % 165 forks

77 Star Q Notifications
Code Issues 33 Pull requests 3 Actions Projects Wiki Security Insights
¥ master v Go to file
B ming024 .. v on8Jlul
View code

‘= README.md

FastSpeech 2 - PyTorch Implementation

This is a PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast
and High-Quality End-to-End Text to Speech. This project is based on xcmyz's
implementation of FastSpeech. Feel free to use/modify the code.

There are several versions of FastSpeech 2. This implementation is more similar to version 1,
which uses FO values as the pitch features. On the other hand, pitch spectrograms extracted
by continuous wavelet transform are used as the pitch features in the later versions.

https://github.com/ming024/FastSpeech2 1/8



2021/8/23 GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

https://github.com/ming024/FastSpeech2

iFastSpeech 5]
' * : ~ T ™ ? ™\
Mel-spectrogram|:| Waveform|: f = ]
Pacodar ][ Decoder ] [ Linear Layer ] [ ConvlD ]
¥ i o 4 e i i
Positional
s 7 By T
- Pitch : :
[ Variance Adaptor ] e [ ConviD + RelLU ] i Gated Activation Ex N
[ 1 ] Pitch Predictor : -
Encoder 3 ; ;
T (_ Saration I LN + Dropout ] i Dilated Conv1D E
Positional @_Ga 1‘ AR R . R R i
g . Duration Predicto I ConviD + ReLU ] [Transposc d Conle]
[ Phoneme Embedding ] i J k ) i x )
[) I
Phoneme
(a) FastSpeech 2 (b) Variance adaptor (c) Variance predictor (d) Waveform decoder

Figure 1: The overall architecture for FastSpeech 2 and 2s. LR in subfigure (b) denotes the length
regulator operation proposed in FastSpeech. LN in subfigure (c) denotes layer normalization. Variance
predictor represents duration/pitch/energy predictor.

Updates

e 2021/7/8: Release the checkpoint and audio samples of a multi-speaker English TTS
model trained on LibriTTS

e 2021/2/26: Support English and Mandarin TTS
e 2021/2/26: Support multi-speaker TTS (AISHELL-3 and LibriTTS)
e 2021/2/26: Support MelGAN and HiFi-GAN vocoder

Audio Samples

Audio samples generated by this implementation can be found here.

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt
Inference

2/8



2021/8/23 GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech”

You have to download the pretrained models and put them in output/ckpt/LISpeech/ ,
output/ckpt/AISHELL3 , Or output/ckpt/LibriTTS/ .

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED _TEXT" --restore_step 900000 --mode
single -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t
config/LJSpeech/train.yaml

For Mandarin multi-speaker TTS, try

python3 synthesize.py --text "AZK{F" --speaker_id SPEAKER_ID --restore_step 600000
--mode single -p config/AISHELL3/preprocess.yaml -m config/AISHELL3/model.yaml -t
config/AISHELL3/train.yaml

For English multi-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --speaker_id SPEAKER_ID --
restore_step 800000 --mode single -p config/LibriTTS/preprocess.yaml -m
config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

The generated utterances will be put in output/result/ .

Here is an example of synthesized mel-spectrogram of the sentence "Printing, in the only
sense with which we are at present concerned, differs from most if not from all the arts and
crafts represented in the Exhibition", with the English single-speaker TTS model.

Synthetized Spectrogram

Energy

G 100 200 300 400 500 00 700

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LJSpeech/val.txt --restore_step
900000 --mode batch -p config/LJSpeech/preprocess.yaml -m
config/LISpeech/model.yaml -t config/LJSpeech/train.yaml

https://github.com/ming024/FastSpeech2 3/8



2021/8/23 GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

to synthesize all utterances in preprocessed_data/LJISpeech/val.txt

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by
specifying the desired pitch/energy/duration ratios. For example, one can increase the
speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED TEXT" --restore_step 900000 --mode
single -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t
config/LJSpeech/train.yaml --duration_control 0.8 --energy control 0.8

Training

Datasets

The supported datasets are

e LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a
female speaker reading passages from 7 non-fiction books, approximately 24 hours in
total.

e AISHELL-3: a Mandarin TTS dataset with 218 male and female speakers, roughly 85
hours in total.

e LibriTTS: a multi-speaker English dataset containing 585 hours of speech by 2456
speakers.

We take LJSpeech as an example hereafter.

Preprocessing

First, run

python3 prepare_align.py config/LJSpeech/preprocess.yaml

for some preparations.

As described in the paper, Montreal Forced Aligner (MFA) is used to obtain the alignments
between the utterances and the phoneme sequences. Alignments of the supported datasets
are provided here. You have to unzip the files in preprocessed_data/LISpeech/TextGrid/ .

After that, run the preprocessing script by

https://github.com/ming024/FastSpeech2 4/8



2021/8/23 GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech”

python3 preprocess.py config/LJSpeech/preprocess.yaml

Alternately, you can align the corpus by yourself. Download the official MFA package and
run

./montreal-forced-aligner/bin/mfa_align raw_data/LJSpeech/ lexicon/librispeech-
lexicon.txt english preprocessed_data/LJSpeech

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LJSpeech/
lexicon/librispeech-1lexicon.txt preprocessed_data/LJISpeech

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LJISpeech/preprocess.yaml

Training
Train your model with

python3 train.py -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml
-t config/LJSpeech/train.yaml

The model takes less than 10k steps (less than 1 hour on my GTX1080Ti GPU) of training to
generate audio samples with acceptable quality, which is much more efficient than the
autoregressive models such as Tacotron2.

TensorBoard

Use

tensorboard --logdir output/log/LJISpeech

to serve TensorBoard on your localhost. The loss curves, synthesized mel-spectrograms, and
audios are shown.

https://github.com/ming024/FastSpeech2 5/8



2021/8/23

nsorBoard SCALARS

[ Show data download links

Ignore outliers in chart scaling

Tooltip sorting method: defauit -

Smoothing

E— - 06

Horizontal Axis

IMAGES  AUDIO

Runs
Write a regex fo filter runs.
O train
O val
TOGGLE ALL RUNS
Joutput/log/LiSpeech/

TensorBoard SCALARS  IMAGES

[ Show actual image size

Brightness adjustment

—e RESET
Contrast adjustment

— RESET
Runs.

Write a regex to filter runs

AUDIO

O train
Q val
TOGGLE ALL RUNS

(output/log/LJSpeech/

TensorBoard SCALARS  IMAGES

Runs

Write a regex to filter runs

AUDIO

TIME SERIES

Q Filter tags (regular expressions supported)

INACTIVE

- | Quuom | ¢ & @

Loss

duration_loss
tag: Loss/duration_loss

energy_loss
tag: Loss/energy_loss

04
008 s
006
02
004
002 w
o o
[ [
0 200k 400k 600k 800k o 200k 400k 600k 800k
pitch_loss total_loss

tag: Loss/pitch_loss

tag: Loss/total_loss

3

e

200k 400k 60Ok 8OOk

TIME SERIES

Q Filter tags (regular expressions supported)

0

200k 400k 60Ok 800K

[
B EiE

mel_loss
tag: Loss/mel_loss

06 06
056

054
052
048 048
044

042
L
036 036

0 200k 400k 00k 800k

mel_postnet_loss
tag: Loss/mel postnet_loss

200k 400k 60Ok  BOOK

(]
(k]

INACTIVE

[Quwow | ¢ & @

Training

PREVIOUS PAGE
Training/step_1000_LJ025-0017 -
step0

Fri Feb 19 2021 23:01:49 GMT+0800 (Taipel Standard Time)

syheized specticarim

Training/step_5000_LJ018-0285 [
step0
Fri Feb 19 2021 23:25:59 GMT+0800 (Taipe Standard Time)

symetaas spactoozn

‘-‘E

[T

TIME SERIES

Q_ Filter tags (regular expressions supported)

Training/step_2000_LJ030-0196
step 0

Fri Fe 10 2021 23.07:53 GMT+0800 (Taipei Standard Time)

Training/step_6000_LJ044-0145
step 0

Fri Feb 19 2021 23:32:00 GMT+0800 (Taipel Standard Time)

NEXT PAGE
B Training/step_3000_LJ020-0022
step0

Fri Feb 192021 23:13:56 GMT+0800 (Taipei Standard Time)

e e spec

W Training/step_7000_LJ041-0116
step0

Fri Feb 192021 23:38:01 GMT+0800 (Tapel Standard Time)

© 3 il it

B Training/step_4000_LJ014-0149
step0

W Training/step_8000_LJ030-0184
step0

FriFeb 19 2021 23:19:58 GMT+0800 (Taipel Standard Time)

i g

]
Fri Feb 19 2021 23:44:03 GMT+0800 (Taipei Standard Time)

synmtzes sozcoorn

INACTIVE -

[Qww | ¢ & @

O train
O vl
TOGGLE ALL RUNS

(output/log/LJspeech/

Training

PREVIOUS PAGE
Training/step_1000_LJ025-0017_reconstructed M8
step0

Fri Feb 19 2021 23:01:49 GMT+0800 (Taipel Standard Time)

» 0:00/0:09

o

Training/step_3000_LJ020-0022_reconstructed Mo
step0
Fri Feb 19 2021 23:13:56 GMT+0800 (Taipei Standard Time)

» 000/0:09

o

Training/step_5000_L.J018-0285_reconstructed S8
step0

Fri Feb 19 2021 23:25:59 GMT+0800 (Taipel Standard Time)

» 000/004

PREVIOUS PAGE
Validation

PREVIOUS PAGE
Validation/step_1000_LJ040-0091_reconstructed
step0
Fri Feb 19 2021 23:01:55 GMT+0800 (Taipei Standard Time)

» 000/0:09

LD

Training/step_1000_LJ025-0017_synthesized
step 0
Fri Feb 19 2021 23:01:49 GMT+0800 (Taipei Standard Time)

> 0:00/0:09 m— <

Training/step_3000_LJ020-0022_synthesized
step 0
Fri Feb 19 2021 23:13:56 GMT+0800 (Taipel Standard Time)

» 0:00/0:09

©

Training/step_5000_LJ018-0285_synthesized
step 0
Fri Feb 19 2021 23:25:59 GMT+0800 (Taipe Standard Time)

» 0:00/0:04

Page 1

Validation/step_1000_LJ040-0091_synthesized
step 0
Fri Feb 19 2021 23:01:55 GMT+0800 (Taipei Standard Time)

» 0:00/0:09

o i

Implementation Issues

NEXT PAGE
8  Training/step_2000_LJ030-0196_reconstructed 8
step0
Fri Feb 19 2021 23:07:53 GMT+0800 (Taipei Standard Time)

» 0:00/0:07

0 i

B8 Training/step_4000_LJ014-0149_reconstructed I
step0
Fri Feb 192021 23:19:58 GMT+0800 (Taipel Standard Time)

> 0:00/0:09

0 i

8  Training/step_6000_LJ044-0145_reconstructed 8
step0
Fri Feb 19 2021 23:32:00 GMT+0800 (Taipe Standard Time)

» 0:00/008

—_— 0 i

of 221

NEXT PAGE

NEXT PAGE
Validation/step_2000_LJ040-0091_reconstructed
step 0
Fri Feb 19 2021 23:07:59 GMT+0800 (Taipei Standard Time)

» 0:00/0:09

i

Training/step_2000_LJ030-0196_synthesized ~  H&M
step0
Fri Feb 19 2021 23:07:53 GMT+0800 (Taipe Standard Time)

» 0:00/007

LD

Training/step_4000_LJ014-0149_synthesized 8
step0
Fri Feb 19 2021 23:19:58 GMT+0800 (Taipei Standard Time)

> 000/009 m— 0 i

Training/step_6000_LJ044-0145_synthesized ~  E88
step0
Fri Feb 19 2021 23:32:00 GMT+0800 (Taipei Standard Time)

» 0:00/008

0 i

Validation/step_2000_L J040-0091_synthesized
step 0
Fri Feb 19 2021 23:07:59 GMT+0800 (Taipei Standard Time)

» 0:00/0:09

LOU

e Following xcmyz's implementation, | use an additional Tacotron-2-styled Post-Net after
the decoder, which is not used in the original FastSpeech 2.

https://github.com/ming024/FastSpeech2

GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech”

6/8



2021/8/23 GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"
e Gradient clipping is used in the training.

¢ In my experience, using phoneme-level pitch and energy prediction instead of frame-
level prediction results in much better prosody, and normalizing the pitch and energy
features also helps. Please refer to config/README.md for more details.

Please inform me if you find any mistakes in this repo, or any useful tips to train the
FastSpeech 2 model.

References

e FastSpeech 2: Fast and High-Quality End-to-End Text to Speech, Y. Ren, et al.
e xcmyz's FastSpeech implementation
e TensorSpeech's FastSpeech 2 implementation

e rishikksh20's FastSpeech 2 implementation
Citation

@INPROCEEDINGS{chien2021investigating,

author={Chien, Chung-Ming and Lin, Jheng-Hao and Huang, Chien-yu and Hsu, Po-
chun and Lee, Hung-yi},

booktitle={ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP)},

title={Investigating on Incorporating Pretrained and Learnable Speaker
Representations for Multi-Speaker Multi-Style Text-to-Speech},

year={2021},

volume={},

number={},

pages={8588-8592},

doi={10.1109/ICASSP39728.2021.9413880}}

Releases

No releases published

Packages

No packages published

Contributors 2

https://github.com/ming024/FastSpeech2 718



2021/8/23 GitHub - ming024/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech”
" ming024 Chung-Ming Chien

a cyhuang-tw Chien-yu Huang

Languages

® Python 81.3% ® HTML 18.7%

https://github.com/ming024/FastSpeech2 8/8



