123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- import torch
- import torch.nn.functional as F
- import numpy as np
- from scipy.signal import get_window
- from librosa.util import pad_center, tiny
- from librosa.filters import mel as librosa_mel_fn
- from audio.audio_processing import (
- dynamic_range_compression,
- dynamic_range_decompression,
- window_sumsquare,
- )
- class STFT(torch.nn.Module):
- """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
- def __init__(self, filter_length, hop_length, win_length, window="hann"):
- super(STFT, self).__init__()
- self.filter_length = filter_length
- self.hop_length = hop_length
- self.win_length = win_length
- self.window = window
- self.forward_transform = None
- scale = self.filter_length / self.hop_length
- fourier_basis = np.fft.fft(np.eye(self.filter_length))
- cutoff = int((self.filter_length / 2 + 1))
- fourier_basis = np.vstack(
- [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
- )
- forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
- inverse_basis = torch.FloatTensor(
- np.linalg.pinv(scale * fourier_basis).T[:, None, :]
- )
- if window is not None:
- assert filter_length >= win_length
- # get window and zero center pad it to filter_length
- fft_window = get_window(window, win_length, fftbins=True)
- fft_window = pad_center(fft_window, filter_length)
- fft_window = torch.from_numpy(fft_window).float()
- # window the bases
- forward_basis *= fft_window
- inverse_basis *= fft_window
- self.register_buffer("forward_basis", forward_basis.float())
- self.register_buffer("inverse_basis", inverse_basis.float())
- def transform(self, input_data):
- num_batches = input_data.size(0)
- num_samples = input_data.size(1)
- self.num_samples = num_samples
- # similar to librosa, reflect-pad the input
- input_data = input_data.view(num_batches, 1, num_samples)
- input_data = F.pad(
- input_data.unsqueeze(1),
- (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
- mode="reflect",
- )
- input_data = input_data.squeeze(1)
- forward_transform = F.conv1d(
- input_data.cuda(),
- torch.autograd.Variable(self.forward_basis, requires_grad=False).cuda(),
- stride=self.hop_length,
- padding=0,
- ).cpu()
- cutoff = int((self.filter_length / 2) + 1)
- real_part = forward_transform[:, :cutoff, :]
- imag_part = forward_transform[:, cutoff:, :]
- magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2)
- phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
- return magnitude, phase
- def inverse(self, magnitude, phase):
- recombine_magnitude_phase = torch.cat(
- [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
- )
- inverse_transform = F.conv_transpose1d(
- recombine_magnitude_phase,
- torch.autograd.Variable(self.inverse_basis, requires_grad=False),
- stride=self.hop_length,
- padding=0,
- )
- if self.window is not None:
- window_sum = window_sumsquare(
- self.window,
- magnitude.size(-1),
- hop_length=self.hop_length,
- win_length=self.win_length,
- n_fft=self.filter_length,
- dtype=np.float32,
- )
- # remove modulation effects
- approx_nonzero_indices = torch.from_numpy(
- np.where(window_sum > tiny(window_sum))[0]
- )
- window_sum = torch.autograd.Variable(
- torch.from_numpy(window_sum), requires_grad=False
- )
- window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
- inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
- approx_nonzero_indices
- ]
- # scale by hop ratio
- inverse_transform *= float(self.filter_length) / self.hop_length
- inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
- inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]
- return inverse_transform
- def forward(self, input_data):
- self.magnitude, self.phase = self.transform(input_data)
- reconstruction = self.inverse(self.magnitude, self.phase)
- return reconstruction
- class TacotronSTFT(torch.nn.Module):
- def __init__(
- self,
- filter_length,
- hop_length,
- win_length,
- n_mel_channels,
- sampling_rate,
- mel_fmin,
- mel_fmax,
- ):
- super(TacotronSTFT, self).__init__()
- self.n_mel_channels = n_mel_channels
- self.sampling_rate = sampling_rate
- self.stft_fn = STFT(filter_length, hop_length, win_length)
- mel_basis = librosa_mel_fn(
- sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax
- )
- mel_basis = torch.from_numpy(mel_basis).float()
- self.register_buffer("mel_basis", mel_basis)
- def spectral_normalize(self, magnitudes):
- output = dynamic_range_compression(magnitudes)
- return output
- def spectral_de_normalize(self, magnitudes):
- output = dynamic_range_decompression(magnitudes)
- return output
- def mel_spectrogram(self, y):
- """Computes mel-spectrograms from a batch of waves
- PARAMS
- ------
- y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
- RETURNS
- -------
- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
- """
- assert torch.min(y.data) >= -1
- assert torch.max(y.data) <= 1
- magnitudes, phases = self.stft_fn.transform(y)
- magnitudes = magnitudes.data
- mel_output = torch.matmul(self.mel_basis, magnitudes)
- mel_output = self.spectral_normalize(mel_output)
- energy = torch.norm(magnitudes, dim=1)
- return mel_output, energy
|