123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- import torch
- import numpy as np
- class ScheduledOptim:
- """ A simple wrapper class for learning rate scheduling """
- def __init__(self, model, train_config, model_config, current_step):
- self._optimizer = torch.optim.Adam(
- model.parameters(),
- betas=train_config["optimizer"]["betas"],
- eps=train_config["optimizer"]["eps"],
- weight_decay=train_config["optimizer"]["weight_decay"],
- )
- self.n_warmup_steps = train_config["optimizer"]["warm_up_step"]
- self.anneal_steps = train_config["optimizer"]["anneal_steps"]
- self.anneal_rate = train_config["optimizer"]["anneal_rate"]
- self.current_step = current_step
- self.init_lr = np.power(model_config["transformer"]["encoder_hidden"], -0.5)
- def step_and_update_lr(self):
- self._update_learning_rate()
- self._optimizer.step()
- def zero_grad(self):
- # print(self.init_lr)
- self._optimizer.zero_grad()
- def load_state_dict(self, path):
- self._optimizer.load_state_dict(path)
- def _get_lr_scale(self):
- lr = np.min(
- [
- np.power(self.current_step, -0.5),
- np.power(self.n_warmup_steps, -1.5) * self.current_step,
- ]
- )
- for s in self.anneal_steps:
- if self.current_step > s:
- lr = lr * self.anneal_rate
- return lr
- def _update_learning_rate(self):
- """ Learning rate scheduling per step """
- self.current_step += 1
- lr = self.init_lr * self._get_lr_scale()
- for param_group in self._optimizer.param_groups:
- param_group["lr"] = lr
|