123456789101112131415161718192021222324252627282930313233343536373839 |
- import os
- import librosa
- import numpy as np
- from scipy.io import wavfile
- from tqdm import tqdm
- from text import _clean_text
- def prepare_align(config):
- in_dir = config["path"]["corpus_path"]
- out_dir = config["path"]["raw_path"]
- sampling_rate = config["preprocessing"]["audio"]["sampling_rate"]
- max_wav_value = config["preprocessing"]["audio"]["max_wav_value"]
- cleaners = config["preprocessing"]["text"]["text_cleaners"]
- speaker = "LJSpeech"
- with open(os.path.join(in_dir, "metadata.csv"), encoding="utf-8") as f:
- for line in tqdm(f):
- parts = line.strip().split("|")
- base_name = parts[0]
- text = parts[2]
- text = _clean_text(text, cleaners)
- wav_path = os.path.join(in_dir, "wavs", "{}.wav".format(base_name))
- if os.path.exists(wav_path):
- os.makedirs(os.path.join(out_dir, speaker), exist_ok=True)
- wav, _ = librosa.load(wav_path, sampling_rate)
- wav = wav / max(abs(wav)) * max_wav_value
- wavfile.write(
- os.path.join(out_dir, speaker, "{}.wav".format(base_name)),
- sampling_rate,
- wav.astype(np.int16),
- )
- with open(
- os.path.join(out_dir, speaker, "{}.lab".format(base_name)),
- "w",
- ) as f1:
- f1.write(text)
|