SubLayers.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. import torch.nn as nn
  2. import torch.nn.functional as F
  3. import numpy as np
  4. from .Modules import ScaledDotProductAttention
  5. class MultiHeadAttention(nn.Module):
  6. """ Multi-Head Attention module """
  7. def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
  8. super().__init__()
  9. self.n_head = n_head
  10. self.d_k = d_k
  11. self.d_v = d_v
  12. self.w_qs = nn.Linear(d_model, n_head * d_k)
  13. self.w_ks = nn.Linear(d_model, n_head * d_k)
  14. self.w_vs = nn.Linear(d_model, n_head * d_v)
  15. self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
  16. self.layer_norm = nn.LayerNorm(d_model)
  17. self.fc = nn.Linear(n_head * d_v, d_model)
  18. self.dropout = nn.Dropout(dropout)
  19. def forward(self, q, k, v, mask=None):
  20. d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
  21. sz_b, len_q, _ = q.size()
  22. sz_b, len_k, _ = k.size()
  23. sz_b, len_v, _ = v.size()
  24. residual = q
  25. q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
  26. k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
  27. v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
  28. q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk
  29. k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
  30. v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv
  31. mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
  32. output, attn = self.attention(q, k, v, mask=mask)
  33. output = output.view(n_head, sz_b, len_q, d_v)
  34. output = (
  35. output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1)
  36. ) # b x lq x (n*dv)
  37. output = self.dropout(self.fc(output))
  38. output = self.layer_norm(output + residual)
  39. return output, attn
  40. class PositionwiseFeedForward(nn.Module):
  41. """ A two-feed-forward-layer module """
  42. def __init__(self, d_in, d_hid, kernel_size, dropout=0.1):
  43. super().__init__()
  44. # Use Conv1D
  45. # position-wise
  46. self.w_1 = nn.Conv1d(
  47. d_in,
  48. d_hid,
  49. kernel_size=kernel_size[0],
  50. padding=(kernel_size[0] - 1) // 2,
  51. )
  52. # position-wise
  53. self.w_2 = nn.Conv1d(
  54. d_hid,
  55. d_in,
  56. kernel_size=kernel_size[1],
  57. padding=(kernel_size[1] - 1) // 2,
  58. )
  59. self.layer_norm = nn.LayerNorm(d_in)
  60. self.dropout = nn.Dropout(dropout)
  61. def forward(self, x):
  62. residual = x
  63. output = x.transpose(1, 2)
  64. output = self.w_2(F.relu(self.w_1(output)))
  65. output = output.transpose(1, 2)
  66. output = self.dropout(output)
  67. output = self.layer_norm(output + residual)
  68. return output