123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import torch.nn as nn
- import torch.nn.functional as F
- import numpy as np
- from .Modules import ScaledDotProductAttention
- class MultiHeadAttention(nn.Module):
- """ Multi-Head Attention module """
- def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
- super().__init__()
- self.n_head = n_head
- self.d_k = d_k
- self.d_v = d_v
- self.w_qs = nn.Linear(d_model, n_head * d_k)
- self.w_ks = nn.Linear(d_model, n_head * d_k)
- self.w_vs = nn.Linear(d_model, n_head * d_v)
- self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
- self.layer_norm = nn.LayerNorm(d_model)
- self.fc = nn.Linear(n_head * d_v, d_model)
- self.dropout = nn.Dropout(dropout)
- def forward(self, q, k, v, mask=None):
- d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
- sz_b, len_q, _ = q.size()
- sz_b, len_k, _ = k.size()
- sz_b, len_v, _ = v.size()
- residual = q
- q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
- k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
- v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
- q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk
- k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
- v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv
- mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
- output, attn = self.attention(q, k, v, mask=mask)
- output = output.view(n_head, sz_b, len_q, d_v)
- output = (
- output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1)
- ) # b x lq x (n*dv)
- output = self.dropout(self.fc(output))
- output = self.layer_norm(output + residual)
- return output, attn
- class PositionwiseFeedForward(nn.Module):
- """ A two-feed-forward-layer module """
- def __init__(self, d_in, d_hid, kernel_size, dropout=0.1):
- super().__init__()
- # Use Conv1D
- # position-wise
- self.w_1 = nn.Conv1d(
- d_in,
- d_hid,
- kernel_size=kernel_size[0],
- padding=(kernel_size[0] - 1) // 2,
- )
- # position-wise
- self.w_2 = nn.Conv1d(
- d_hid,
- d_in,
- kernel_size=kernel_size[1],
- padding=(kernel_size[1] - 1) // 2,
- )
- self.layer_norm = nn.LayerNorm(d_in)
- self.dropout = nn.Dropout(dropout)
- def forward(self, x):
- residual = x
- output = x.transpose(1, 2)
- output = self.w_2(F.relu(self.w_1(output)))
- output = output.transpose(1, 2)
- output = self.dropout(output)
- output = self.layer_norm(output + residual)
- return output
|