#! /usr/bin/env python import cv2 import numpy as np import scipy.spatial as spatial import logging ## 3D Transform def bilinear_interpolate(img, coords): """ Interpolates over every image channel http://en.wikipedia.org/wiki/Bilinear_interpolation :param img: max 3 channel image :param coords: 2 x _m_ array. 1st row = xcoords, 2nd row = ycoords :returns: array of interpolated pixels with same shape as coords """ int_coords = np.int32(coords) x0, y0 = int_coords dx, dy = coords - int_coords # 4 Neighour pixels q11 = img[y0, x0] q21 = img[y0, x0 + 1] q12 = img[y0 + 1, x0] q22 = img[y0 + 1, x0 + 1] btm = q21.T * dx + q11.T * (1 - dx) top = q22.T * dx + q12.T * (1 - dx) inter_pixel = top * dy + btm * (1 - dy) return inter_pixel.T def grid_coordinates(points): """ x,y grid coordinates within the ROI of supplied points :param points: points to generate grid coordinates :returns: array of (x, y) coordinates """ xmin = np.min(points[:, 0]) xmax = np.max(points[:, 0]) + 1 ymin = np.min(points[:, 1]) ymax = np.max(points[:, 1]) + 1 return np.asarray([(x, y) for y in range(ymin, ymax) for x in range(xmin, xmax)], np.uint32) def process_warp(src_img, result_img, tri_affines, dst_points, delaunay): """ Warp each triangle from the src_image only within the ROI of the destination image (points in dst_points). """ roi_coords = grid_coordinates(dst_points) # indices to vertices. -1 if pixel is not in any triangle roi_tri_indices = delaunay.find_simplex(roi_coords) for simplex_index in range(len(delaunay.simplices)): coords = roi_coords[roi_tri_indices == simplex_index] num_coords = len(coords) out_coords = np.dot(tri_affines[simplex_index], np.vstack((coords.T, np.ones(num_coords)))) x, y = coords.T result_img[y, x] = bilinear_interpolate(src_img, out_coords) return None def triangular_affine_matrices(vertices, src_points, dst_points): """ Calculate the affine transformation matrix for each triangle (x,y) vertex from dst_points to src_points :param vertices: array of triplet indices to corners of triangle :param src_points: array of [x, y] points to landmarks for source image :param dst_points: array of [x, y] points to landmarks for destination image :returns: 2 x 3 affine matrix transformation for a triangle """ ones = [1, 1, 1] for tri_indices in vertices: src_tri = np.vstack((src_points[tri_indices, :].T, ones)) dst_tri = np.vstack((dst_points[tri_indices, :].T, ones)) mat = np.dot(src_tri, np.linalg.inv(dst_tri))[:2, :] yield mat def warp_image_3d(src_img, src_points, dst_points, dst_shape, dtype=np.uint8): rows, cols = dst_shape[:2] result_img = np.zeros((rows, cols, 3), dtype=dtype) delaunay = spatial.Delaunay(dst_points) tri_affines = np.asarray(list(triangular_affine_matrices( delaunay.simplices, src_points, dst_points))) process_warp(src_img, result_img, tri_affines, dst_points, delaunay) return result_img ## 2D Transform def transformation_from_points(points1, points2): points1 = points1.astype(np.float64) points2 = points2.astype(np.float64) c1 = np.mean(points1, axis=0) c2 = np.mean(points2, axis=0) points1 -= c1 points2 -= c2 s1 = np.std(points1) s2 = np.std(points2) points1 /= s1 points2 /= s2 U, S, Vt = np.linalg.svd(np.dot(points1.T, points2)) R = (np.dot(U, Vt)).T return np.vstack([np.hstack([s2 / s1 * R, (c2.T - np.dot(s2 / s1 * R, c1.T))[:, np.newaxis]]), np.array([[0., 0., 1.]])]) def warp_image_2d(im, M, dshape): output_im = np.zeros(dshape, dtype=im.dtype) cv2.warpAffine(im, M[:2], (dshape[1], dshape[0]), dst=output_im, borderMode=cv2.BORDER_TRANSPARENT, flags=cv2.WARP_INVERSE_MAP) return output_im ## Generate Mask def mask_from_points(size, points,erode_flag=1): radius = 10 # kernel size kernel = np.ones((radius, radius), np.uint8) mask = np.zeros(size, np.uint8) cv2.fillConvexPoly(mask, cv2.convexHull(points), 255) if erode_flag: mask = cv2.erode(mask, kernel,iterations=1) return mask ## Color Correction def correct_colours(im1, im2, landmarks1): COLOUR_CORRECT_BLUR_FRAC = 0.75 LEFT_EYE_POINTS = list(range(42, 48)) RIGHT_EYE_POINTS = list(range(36, 42)) blur_amount = COLOUR_CORRECT_BLUR_FRAC * np.linalg.norm( np.mean(landmarks1[LEFT_EYE_POINTS], axis=0) - np.mean(landmarks1[RIGHT_EYE_POINTS], axis=0)) blur_amount = int(blur_amount) if blur_amount % 2 == 0: blur_amount += 1 im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0) im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0) # Avoid divide-by-zero errors. im2_blur = im2_blur.astype(int) im2_blur += 128*(im2_blur <= 1) result = im2.astype(np.float64) * im1_blur.astype(np.float64) / im2_blur.astype(np.float64) result = np.clip(result, 0, 255).astype(np.uint8) return result ## Copy-and-paste def apply_mask(img, mask): """ Apply mask to supplied image :param img: max 3 channel image :param mask: [0-255] values in mask :returns: new image with mask applied """ masked_img=cv2.bitwise_and(img,img,mask=mask) return masked_img ## Alpha blending def alpha_feathering(src_img, dest_img, img_mask, blur_radius=15): mask = cv2.blur(img_mask, (blur_radius, blur_radius)) mask = mask / 255.0 result_img = np.empty(src_img.shape, np.uint8) for i in range(3): result_img[..., i] = src_img[..., i] * mask + dest_img[..., i] * (1-mask) return result_img def check_points(img,points): # Todo: I just consider one situation. if points[8,1]>img.shape[0]: logging.error("Jaw part out of image") else: return True return False def face_swap(src_face, dst_face, src_points, dst_points, dst_shape, dst_img, args, end=48): h, w = dst_face.shape[:2] ## 3d warp warped_src_face = warp_image_3d(src_face, src_points[:end], dst_points[:end], (h, w)) ## Mask for blending mask = mask_from_points((h, w), dst_points) mask_src = np.mean(warped_src_face, axis=2) > 0 mask = np.asarray(mask * mask_src, dtype=np.uint8) ## Correct color if args.correct_color: warped_src_face = apply_mask(warped_src_face, mask) dst_face_masked = apply_mask(dst_face, mask) warped_src_face = correct_colours(dst_face_masked, warped_src_face, dst_points) ## 2d warp if args.warp_2d: unwarped_src_face = warp_image_3d(warped_src_face, dst_points[:end], src_points[:end], src_face.shape[:2]) warped_src_face = warp_image_2d(unwarped_src_face, transformation_from_points(dst_points, src_points), (h, w, 3)) mask = mask_from_points((h, w), dst_points) mask_src = np.mean(warped_src_face, axis=2) > 0 mask = np.asarray(mask * mask_src, dtype=np.uint8) ## Shrink the mask kernel = np.ones((10, 10), np.uint8) mask = cv2.erode(mask, kernel, iterations=1) ##Poisson Blending r = cv2.boundingRect(mask) center = ((r[0] + int(r[2] / 2), r[1] + int(r[3] / 2))) output = cv2.seamlessClone(warped_src_face, dst_face, mask, center, cv2.NORMAL_CLONE) x, y, w, h = dst_shape dst_img_cp = dst_img.copy() dst_img_cp[y:y + h, x:x + w] = output return dst_img_cp