123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- #! /usr/bin/env python
- import cv2
- import numpy as np
- import scipy.spatial as spatial
- import logging
- ## 3D Transform
- def bilinear_interpolate(img, coords):
- """ Interpolates over every image channel
- http://en.wikipedia.org/wiki/Bilinear_interpolation
- :param img: max 3 channel image
- :param coords: 2 x _m_ array. 1st row = xcoords, 2nd row = ycoords
- :returns: array of interpolated pixels with same shape as coords
- """
- int_coords = np.int32(coords)
- x0, y0 = int_coords
- dx, dy = coords - int_coords
- # 4 Neighour pixels
- q11 = img[y0, x0]
- q21 = img[y0, x0 + 1]
- q12 = img[y0 + 1, x0]
- q22 = img[y0 + 1, x0 + 1]
- btm = q21.T * dx + q11.T * (1 - dx)
- top = q22.T * dx + q12.T * (1 - dx)
- inter_pixel = top * dy + btm * (1 - dy)
- return inter_pixel.T
- def grid_coordinates(points):
- """ x,y grid coordinates within the ROI of supplied points
- :param points: points to generate grid coordinates
- :returns: array of (x, y) coordinates
- """
- xmin = np.min(points[:, 0])
- xmax = np.max(points[:, 0]) + 1
- ymin = np.min(points[:, 1])
- ymax = np.max(points[:, 1]) + 1
- return np.asarray([(x, y) for y in range(ymin, ymax)
- for x in range(xmin, xmax)], np.uint32)
- def process_warp(src_img, result_img, tri_affines, dst_points, delaunay):
- """
- Warp each triangle from the src_image only within the
- ROI of the destination image (points in dst_points).
- """
- roi_coords = grid_coordinates(dst_points)
- # indices to vertices. -1 if pixel is not in any triangle
- roi_tri_indices = delaunay.find_simplex(roi_coords)
- for simplex_index in range(len(delaunay.simplices)):
- coords = roi_coords[roi_tri_indices == simplex_index]
- num_coords = len(coords)
- out_coords = np.dot(tri_affines[simplex_index],
- np.vstack((coords.T, np.ones(num_coords))))
- x, y = coords.T
- result_img[y, x] = bilinear_interpolate(src_img, out_coords)
- return None
- def triangular_affine_matrices(vertices, src_points, dst_points):
- """
- Calculate the affine transformation matrix for each
- triangle (x,y) vertex from dst_points to src_points
- :param vertices: array of triplet indices to corners of triangle
- :param src_points: array of [x, y] points to landmarks for source image
- :param dst_points: array of [x, y] points to landmarks for destination image
- :returns: 2 x 3 affine matrix transformation for a triangle
- """
- ones = [1, 1, 1]
- for tri_indices in vertices:
- src_tri = np.vstack((src_points[tri_indices, :].T, ones))
- dst_tri = np.vstack((dst_points[tri_indices, :].T, ones))
- mat = np.dot(src_tri, np.linalg.inv(dst_tri))[:2, :]
- yield mat
- def warp_image_3d(src_img, src_points, dst_points, dst_shape, dtype=np.uint8):
- rows, cols = dst_shape[:2]
- result_img = np.zeros((rows, cols, 3), dtype=dtype)
- delaunay = spatial.Delaunay(dst_points)
- tri_affines = np.asarray(list(triangular_affine_matrices(
- delaunay.simplices, src_points, dst_points)))
- process_warp(src_img, result_img, tri_affines, dst_points, delaunay)
- return result_img
- ## 2D Transform
- def transformation_from_points(points1, points2):
- points1 = points1.astype(np.float64)
- points2 = points2.astype(np.float64)
- c1 = np.mean(points1, axis=0)
- c2 = np.mean(points2, axis=0)
- points1 -= c1
- points2 -= c2
- s1 = np.std(points1)
- s2 = np.std(points2)
- points1 /= s1
- points2 /= s2
- U, S, Vt = np.linalg.svd(np.dot(points1.T, points2))
- R = (np.dot(U, Vt)).T
- return np.vstack([np.hstack([s2 / s1 * R,
- (c2.T - np.dot(s2 / s1 * R, c1.T))[:, np.newaxis]]),
- np.array([[0., 0., 1.]])])
- def warp_image_2d(im, M, dshape):
- output_im = np.zeros(dshape, dtype=im.dtype)
- cv2.warpAffine(im,
- M[:2],
- (dshape[1], dshape[0]),
- dst=output_im,
- borderMode=cv2.BORDER_TRANSPARENT,
- flags=cv2.WARP_INVERSE_MAP)
- return output_im
- ## Generate Mask
- def mask_from_points(size, points,erode_flag=1):
- radius = 10 # kernel size
- kernel = np.ones((radius, radius), np.uint8)
- mask = np.zeros(size, np.uint8)
- cv2.fillConvexPoly(mask, cv2.convexHull(points), 255)
- if erode_flag:
- mask = cv2.erode(mask, kernel,iterations=1)
- return mask
- ## Color Correction
- def correct_colours(im1, im2, landmarks1):
- COLOUR_CORRECT_BLUR_FRAC = 0.75
- LEFT_EYE_POINTS = list(range(42, 48))
- RIGHT_EYE_POINTS = list(range(36, 42))
- blur_amount = COLOUR_CORRECT_BLUR_FRAC * np.linalg.norm(
- np.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
- np.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
- blur_amount = int(blur_amount)
- if blur_amount % 2 == 0:
- blur_amount += 1
- im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
- im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
- # Avoid divide-by-zero errors.
- im2_blur = im2_blur.astype(int)
- im2_blur += 128*(im2_blur <= 1)
- result = im2.astype(np.float64) * im1_blur.astype(np.float64) / im2_blur.astype(np.float64)
- result = np.clip(result, 0, 255).astype(np.uint8)
- return result
- ## Copy-and-paste
- def apply_mask(img, mask):
- """ Apply mask to supplied image
- :param img: max 3 channel image
- :param mask: [0-255] values in mask
- :returns: new image with mask applied
- """
- masked_img=cv2.bitwise_and(img,img,mask=mask)
- return masked_img
- ## Alpha blending
- def alpha_feathering(src_img, dest_img, img_mask, blur_radius=15):
- mask = cv2.blur(img_mask, (blur_radius, blur_radius))
- mask = mask / 255.0
- result_img = np.empty(src_img.shape, np.uint8)
- for i in range(3):
- result_img[..., i] = src_img[..., i] * mask + dest_img[..., i] * (1-mask)
- return result_img
- def check_points(img,points):
- # Todo: I just consider one situation.
- if points[8,1]>img.shape[0]:
- logging.error("Jaw part out of image")
- else:
- return True
- return False
- def face_swap(src_face, dst_face, src_points, dst_points, dst_shape, dst_img, args, end=48):
- h, w = dst_face.shape[:2]
- ## 3d warp
- warped_src_face = warp_image_3d(src_face, src_points[:end], dst_points[:end], (h, w))
- ## Mask for blending
- mask = mask_from_points((h, w), dst_points)
- mask_src = np.mean(warped_src_face, axis=2) > 0
- mask = np.asarray(mask * mask_src, dtype=np.uint8)
- ## Correct color
- if args.correct_color:
- warped_src_face = apply_mask(warped_src_face, mask)
- dst_face_masked = apply_mask(dst_face, mask)
- warped_src_face = correct_colours(dst_face_masked, warped_src_face, dst_points)
- ## 2d warp
- if args.warp_2d:
- unwarped_src_face = warp_image_3d(warped_src_face, dst_points[:end], src_points[:end], src_face.shape[:2])
- warped_src_face = warp_image_2d(unwarped_src_face, transformation_from_points(dst_points, src_points),
- (h, w, 3))
- mask = mask_from_points((h, w), dst_points)
- mask_src = np.mean(warped_src_face, axis=2) > 0
- mask = np.asarray(mask * mask_src, dtype=np.uint8)
- ## Shrink the mask
- kernel = np.ones((10, 10), np.uint8)
- mask = cv2.erode(mask, kernel, iterations=1)
- ##Poisson Blending
- r = cv2.boundingRect(mask)
- center = ((r[0] + int(r[2] / 2), r[1] + int(r[3] / 2)))
- output = cv2.seamlessClone(warped_src_face, dst_face, mask, center, cv2.NORMAL_CLONE)
- x, y, w, h = dst_shape
- dst_img_cp = dst_img.copy()
- dst_img_cp[y:y + h, x:x + w] = output
- return dst_img_cp
|