### Python = 3.9 import os from dotenv import load_dotenv load_dotenv('environment.env') import openai openai_api_key = os.getenv("OPENAI_API_KEY") openai.api_key = openai_api_key from langchain_openai import OpenAIEmbeddings embeddings_model = OpenAIEmbeddings() from langchain_community.document_loaders.csv_loader import CSVLoader from langchain_chroma import Chroma # from supabase import create_client, Client # supabase_url = os.getenv("SUPABASE_URL") # supabase_key = os.getenv("SUPABASE_KEY") # supabase: Client = create_client(supabase_url, supabase_key) ############# Load data ############# def extract_field(doc, field_name): for line in doc.page_content.split('\n'): if line.startswith(f"{field_name}:"): return line.split(':', 1)[1].strip() return None loader = CSVLoader(file_path="video_cache_rows.csv") data = loader.load() field_name = "question" question = [extract_field(doc, field_name) for doc in data] # ####### load data from supabase ####### # embeddings_model = OpenAIEmbeddings() # response = supabase.table("video_cache_rows").select("question").execute() # data = response.data # created_at = [] # question = [] # ids = [] # answer = [] # video_url = [] # for item in data: # ids.append(item['id']) # created_at.append(item['created_at']) # question.append(item['question']) # answer.append(item['answer']) # video_url.append(item['video_url']) ########## generate embedding ########### embedding = embeddings_model.embed_documents(question) ########## Write embedding to the supabase table ####### # for id, new_embedding in zip(ids, embedding): # supabase.table("video_cache_rows_duplicate").insert({"embedding": embedding.tolist()}).eq("id", id).execute() ######### Vector Store ########## # Put pre-compute embeddings to vector store. ## save to disk vectorstore = Chroma.from_texts( texts=question, embedding=embeddings_model, persist_directory="./chroma_db" ) ####### load from disk ####### query = "101可以帶狗嗎" vectorstore = Chroma(persist_directory="./chroma_db", embedding_function=embeddings_model) docs = vectorstore.similarity_search(query) print(f"Query: {query} | 最接近文檔:{docs[0].page_content}") ####### Query it ######### query = "101可以帶狗嗎" docs = vectorstore.similarity_search(query) print(f"Query: {query} | 最接近文檔:{docs[0].page_content}")