# import os # import sys # from supabase import create_client, Client # # # Load environment variables # from dotenv import load_dotenv # load_dotenv('environment.env') # # Get Supabase configuration from environment variables # SUPABASE_URL = os.getenv("SUPABASE_URL") # SUPABASE_KEY = os.getenv("SUPABASE_KEY") # SUPABASE_URI = os.getenv("SUPABASE_URI") # OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # # Check if environment variables are successfully loaded # if not SUPABASE_URL or not SUPABASE_KEY or not OPENAI_API_KEY or not SUPABASE_URI: # print("Please ensure SUPABASE_URL, SUPABASE_KEY, and OPENAI_API_KEY are correctly set in the .env file.") # sys.exit(1) # else: # print("Connection successful.") # try: # supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY) # print("Client created successfully.") # except Exception as e: # print("Client creation failed:", e) # sys.exit(1) # # List all table names # try: # response = supabase.table('information_schema.tables').select('table_name').eq('table_schema', 'public').execute() # table_names = [table['table_name'] for table in response.data] # print("All table names:") # for name in table_names: # print(name) # except Exception as e: # print("Connection failed:", e) # sys.exit(1) # ### Test hugging face tokens for the TAIDE local model. ###################################################### # from transformers import AutoTokenizer, AutoModelForCausalLM # token = os.getenv("HF_API_KEY_7B4BIT") # # Check if the token is loaded correctly # if token is None: # raise ValueError("Hugging Face API token is not set. Please check your environment.env file.") # # Load the tokenizer and model with the token # try: # tokenizer = AutoTokenizer.from_pretrained("../TAIDE-LX-7B-Chat-4bit", token=token) # model = AutoModelForCausalLM.from_pretrained("../TAIDE-LX-7B-Chat-4bit", token=token) # # Verify the model and tokenizer # print(f"Loaded tokenizer: {tokenizer.name_or_path}") # print(f"Loaded model: {model.name_or_path}") # # Optional: Print model and tokenizer configuration for more details # print(f"Model configuration: {model.config}") # print(f"Tokenizer configuration: {tokenizer}") # except Exception as e: # print(f"Error loading model or tokenizer: {e}") ################################################################################################################# # import torch # from transformers import AutoModelForCausalLM, AutoTokenizer # from huggingface_hub import hf_hub_download # from llama_cpp import Llama # ## Download the GGUF model # model_name = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF" # model_file = "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf" # this is the specific model file we'll use in this example. It's a 4-bit quant, but other levels of quantization are available in the model repo if preferred # model_path = hf_hub_download(model_name, filename=model_file) # import requests # def generate_response(input_text, max_length=512, temperature=0.7): # # URL to interact with the model # url = "http://localhost:11434/v1/chat/completions" # Adjust based on how Ollama exposes the model # # Payload to send to the model # payload = { # "input": input_text, # "parameters": { # "max_length": max_length, # "temperature": temperature # } # } # # Make a request to the model # response = requests.post(url, json=payload) # return response.json()["output"] # if __name__ == "__main__": # input_text = "I believe the meaning of life is" # response = generate_response(input_text, max_length=128, temperature=0.5) # print(f"Model: {response}")