from dotenv import load_dotenv load_dotenv('environment.env') from fastapi import FastAPI, Request, HTTPException, status, Body # from fastapi.templating import Jinja2Templates from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import FileResponse from fastapi import Depends from contextlib import asynccontextmanager from pydantic import BaseModel from typing import List, Optional import uvicorn import sqlparse from sqlalchemy import create_engine import pandas as pd #from retrying import retry import datetime import json from json import loads import time from langchain.callbacks import get_openai_callback from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings from RAG_strategy import multi_query, naive_rag, naive_rag_for_qapairs from Indexing_Split import create_retriever as split_retriever from Indexing_Split import gen_doc_from_database, gen_doc_from_history import os from langchain_community.vectorstores import SupabaseVectorStore from langchain_openai import OpenAIEmbeddings from supabase.client import Client, create_client from add_vectordb import GetVectorStore from langchain_community.cache import RedisSemanticCache # 更新导入路径 from langchain_core.prompts import PromptTemplate import openai # Get API log import logging logger = logging.getLogger("uvicorn.error") openai_api_key = os.getenv("OPENAI_API_KEY") URI = os.getenv("SUPABASE_URI") openai.api_key = openai_api_key global_retriever = None # 定義FastAPI的生命週期管理器,在啟動和關閉時執行特定操作 @asynccontextmanager async def lifespan(app: FastAPI): global global_retriever global vector_store start = time.time() # global_retriever = split_retriever(path='./Documents', extension="docx") # global_retriever = raptor_retriever(path='../Documents', extension="txt") # global_retriever = unstructured_retriever(path='../Documents') supabase_url = os.getenv("SUPABASE_URL") supabase_key = os.getenv("SUPABASE_KEY") URI = os.getenv("SUPABASE_URI") document_table = "documents" supabase: Client = create_client(supabase_url, supabase_key) embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) vector_store = GetVectorStore(embeddings, supabase, document_table) global_retriever = vector_store.as_retriever(search_kwargs={"k": 4}) print(time.time() - start) yield # 定義依賴注入函數,用於在請求處理過程中獲取全局變量 def get_retriever(): return global_retriever def get_vector_store(): return vector_store # 創建FastAPI應用實例並配置以及中間件 app = FastAPI(lifespan=lifespan) # templates = Jinja2Templates(directory="temp") app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # 定義API路由和處理函數 # 處理傳入的問題並返回答案 @app.get("/answer2") def multi_query_answer(question, retriever=Depends(get_retriever)): try: start = time.time() with get_openai_callback() as cb: # qa_doc = gen_doc_from_database() # qa_history_doc = gen_doc_from_history() # qa_doc.extend(qa_history_doc) # vectorstore = Chroma.from_documents(documents=qa_doc, embedding=OpenAIEmbeddings(), collection_name="qa_pairs") # retriever_qa = vectorstore.as_retriever(search_kwargs={"k": 3}) # final_answer, reference_docs = naive_rag_for_qapairs(question, retriever_qa) final_answer = 'False' if final_answer == 'False': final_answer, reference_docs = multi_query(question, retriever, chat_history=[]) # print(CHAT_HISTORY) # with get_openai_callback() as cb: # final_answer, reference_docs = multi_query(question, retriever) processing_time = time.time() - start print(processing_time) save_history(question, final_answer, reference_docs, cb, processing_time) return {"Answer": final_answer} except Exception as e: logger.error(f"Error in /answer2 endpoint: {e}") raise HTTPException(status_code=500, detail="Internal Server Error") class ChatHistoryItem(BaseModel): q: str a: str # 處理帶有歷史聊天紀錄的問題並返回答案 @app.post("/answer_with_history") def multi_query_answer(question: Optional[str] = '', chat_history: List[ChatHistoryItem] = Body(...), retriever=Depends(get_retriever)): start = time.time() chat_history = [(item.q, item.a) for item in chat_history if item.a != ""] print(chat_history) # TODO: similarity search with get_openai_callback() as cb: final_answer, reference_docs = multi_query(question, retriever, chat_history) processing_time = time.time() - start print(processing_time) save_history(question, final_answer, reference_docs, cb, processing_time) return {"Answer": final_answer} # 處理帶有聊天歷史紀錄和文件名過濾的問題,並返回答案 @app.post("/answer_with_history2") def multi_query_answer(question: Optional[str] = '', extension: Optional[str] = 'pdf', chat_history: List[ChatHistoryItem] = Body(...), retriever=Depends(get_retriever)): start = time.time() retriever = vector_store.as_retriever(search_kwargs={"k": 4, 'filter': {'extension':extension}}) chat_history = [(item.q, item.a) for item in chat_history if item.a != ""] print(chat_history) # TODO: similarity search with get_openai_callback() as cb: final_answer, reference_docs = multi_query(question, retriever, chat_history) processing_time = time.time() - start print(processing_time) save_history(question, final_answer, reference_docs, cb, processing_time) return {"Answer": final_answer} # 保存歷史。將處理結果儲存到數據庫 def save_history(question, answer, reference, cb, processing_time): # reference = [doc.dict() for doc in reference] record = { 'Question': [question], 'Answer': [answer], 'Total_Tokens': [cb.total_tokens], 'Total_Cost': [cb.total_cost], 'Processing_time': [processing_time], 'Contexts': [str(reference)] } df = pd.DataFrame(record) engine = create_engine(URI) df.to_sql(name='systex_records', con=engine, index=False, if_exists='append') class history_output(BaseModel): Question: str Answer: str Contexts: str Total_Tokens: int Total_Cost: float Processing_time: float Time: datetime.datetime # 定義獲取歷史紀錄的路由 @app.get('/history', response_model=List[history_output]) async def get_history(): engine = create_engine(URI, echo=True) df = pd.read_sql_table("systex_records", engine.connect()) df.fillna('', inplace=True) result = df.to_json(orient='index', force_ascii=False) result = loads(result) return result.values() @app.get("/") def read_root(): return {"message": "Welcome to the Carbon Chatbot API"} if __name__ == "__main__": uvicorn.run("RAG_app_copy:app", host='127.0.0.1', port=8081, reload=True) # if __name__ == "__main__": # uvicorn.run("RAG_app:app", host='cmm.ai', port=8081, reload=True, ssl_keyfile="/etc/letsencrypt/live/cmm.ai/privkey.pem", # ssl_certfile="/etc/letsencrypt/live/cmm.ai/fullchain.pem")