from langchain.prompts import ChatPromptTemplate from langchain.load import dumps, loads from langchain_core.output_parsers import StrOutputParser from langchain_openai import ChatOpenAI from langchain_community.llms import Ollama from langchain_community.chat_models import ChatOllama from operator import itemgetter from langchain_core.runnables import RunnablePassthrough from langchain import hub from langchain.globals import set_llm_cache from langchain import PromptTemplate import subprocess import json from typing import Any, List, Optional, Dict from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import BaseChatModel from langchain_core.messages import BaseMessage, AIMessage, HumanMessage, SystemMessage from langchain_core.outputs import ChatResult, ChatGeneration from pydantic import Field from langchain_core.runnables import ( RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough, ) from datasets import Dataset from ragas import evaluate from ragas.metrics import ( answer_relevancy, faithfulness, context_recall, context_precision, ) import os from dotenv import load_dotenv load_dotenv('environment.env') from langchain.cache import SQLiteCache from langchain_openai import OpenAIEmbeddings from langchain.globals import set_llm_cache import requests import openai openai_api_key = os.getenv("OPENAI_API_KEY") openai.api_key = openai_api_key URI = os.getenv("SUPABASE_URI") # 設置緩存,以減少對API的重複請求。使用SQLite set_llm_cache(SQLiteCache(database_path=".langchain.db")) system_prompt: str = "你是一個來自台灣的AI助理,你的名字是 TAIDE,樂於以台灣人的立場幫助使用者,會用繁體中文回答問題。" class OllamaChatModel(BaseChatModel): model_name: str = Field(default="taide-local") def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: formatted_messages = [] for msg in messages: if isinstance(msg, HumanMessage): formatted_messages.append({"role": "user", "content": msg.content}) elif isinstance(msg, AIMessage): formatted_messages.append({"role": "assistant", "content": msg.content}) elif isinstance(msg, SystemMessage): formatted_messages.append({"role": "system", "content": msg.content}) prompt = f"[INST] <>\n{system_prompt}\n<>\n\n" for msg in formatted_messages: if msg['role'] == 'user': prompt += f"{msg['content']} [/INST]" elif msg['role'] == "assistant": prompt += f"{msg['content']} [INST]" command = ["ollama", "run", self.model_name, prompt] result = subprocess.run(command, capture_output=True, text=True) if result.returncode != 0: raise Exception(f"Ollama command failed: {result.stderr}") content = result.stdout.strip() message = AIMessage(content=content) generation = ChatGeneration(message=message) return ChatResult(generations=[generation]) @property def _llm_type(self) -> str: return "ollama-chat-model" taide_llm = OllamaChatModel(model_name="taide-local") def multi_query(question, retriever, chat_history): def multi_query_chain(): template = """You are an AI language model assistant. Your task is to generate three different versions of the given user question to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of the distance-based similarity search. Provide these alternative questions separated by newlines. You must return original question also, which means that you return 1 original version + 3 different versions = 4 questions. Original question: {question}""" prompt_perspectives = ChatPromptTemplate.from_template(template) generate_queries = ( prompt_perspectives | taide_llm | StrOutputParser() | (lambda x: x.split("\n")) ) return generate_queries def get_unique_union(documents: List[list]): flattened_docs = [dumps(doc) for sublist in documents for doc in sublist] unique_docs = list(set(flattened_docs)) return [loads(doc) for doc in unique_docs] _search_query = get_search_query() modified_question = _search_query.invoke({"question":question, "chat_history": chat_history}) # print(modified_question) generate_queries = multi_query_chain() retrieval_chain = generate_queries | retriever.map() | get_unique_union docs = retrieval_chain.invoke({"question":modified_question}) answer = multi_query_rag_prompt(retrieval_chain, modified_question) return answer, docs def multi_query_rag_prompt(retrieval_chain, question): template = """Answer the following question based on this context: {context} Question: {question} Output in user's language. If the question is in zh-tw, then the output will be in zh-tw. If the question is in English, then the output will be in English. You should not mention anything about "根據提供的文件內容" or other similar terms. If you don't know the answer, just say that "很抱歉,目前我無法回答您的問題,請將您的詢問發送至 test@email.com 以便獲得更進一步的幫助,謝謝。I'm sorry I cannot answer your question. Please send your question to test@email.com for further assistance. Thank you." """ prompt = ChatPromptTemplate.from_template(template) context = retrieval_chain.invoke({"question": question}) # print(f"Retrieved context: {context[:200]}...") # Print first 200 chars of context final_rag_chain = ( {"context": retrieval_chain, "question": itemgetter("question")} | prompt | taide_llm | StrOutputParser() ) print(f"Sending question to model: {question}") try: answer = final_rag_chain.invoke({"question": question}) # print(f"Received answer: {answer}") return answer except Exception as e: print(f"Error invoking rag_chain: {e}") return "Error occurred while processing the question." def get_search_query(): _template = """Rewrite the following query by incorporating relevant context from the conversation history. The rewritten query should: - Preserve the core intent and meaning of the original query - Expand and clarify the query to make it more specific and informative for retrieving relevant context - Avoid introducing new topics or queries that deviate from the original query - DONT EVER ANSWER the Original query, but instead focus on rephrasing and expanding it into a new query - The rewritten query should be in its original language. Return ONLY the rewritten query text, without any additional formatting or explanations. Conversation History: {chat_history} Original query: [{question}] Rewritten query: """ CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) def _format_chat_history(chat_history: List[tuple[str, str]]) -> List: buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer _search_query = RunnableBranch( ( RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config( run_name="HasChatHistoryCheck" ), RunnablePassthrough.assign( chat_history=lambda x: _format_chat_history(x["chat_history"]) ) | CONDENSE_QUESTION_PROMPT | ChatOpenAI() | StrOutputParser(), ), RunnableLambda(lambda x : x["question"]), ) return _search_query