add_vectordb.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. from dotenv import load_dotenv
  2. load_dotenv('environment.env')
  3. from langchain_openai import OpenAIEmbeddings
  4. from langchain_community.vectorstores import Chroma
  5. from langchain_community.document_loaders import TextLoader
  6. from langchain_text_splitters import RecursiveCharacterTextSplitter
  7. from langchain_community.document_loaders import PyPDFLoader
  8. from langchain_community.document_loaders import Docx2txtLoader
  9. import os
  10. import glob
  11. import openai
  12. from langchain_community.vectorstores import SupabaseVectorStore
  13. from langchain_openai import OpenAIEmbeddings
  14. from supabase.client import Client, create_client
  15. def get_data_list(data_list=None, path=None, extension=None, update=False):
  16. files = data_list or glob.glob(os.path.join(path, f"*.{extension}"))
  17. if update:
  18. doc = files.copy()
  19. else:
  20. existed_data = check_existed_data(supabase)
  21. doc = []
  22. for file_path in files:
  23. filename = os.path.basename(file_path)
  24. if filename not in existed_data:
  25. doc.append(file_path)
  26. return doc
  27. def read_and_split_files(data_list=None, path=None, extension=None, update=False):
  28. def load_and_split(file_list):
  29. chunks = []
  30. for file in file_list:
  31. if file.endswith(".txt"):
  32. loader = TextLoader(file, encoding='utf-8')
  33. elif file.endswith(".pdf"):
  34. loader = PyPDFLoader(file)
  35. elif file.endswith(".docx"):
  36. loader = Docx2txtLoader(file)
  37. else:
  38. print(f"Unsupported file extension: {file}")
  39. continue
  40. docs = loader.load()
  41. # Split
  42. if file.endswith(".docx"):
  43. separators = ['\u25cb\s*第.*?條', '\u25cf\s*第.*?條']
  44. text_splitter = RecursiveCharacterTextSplitter(is_separator_regex=True, separators=separators, chunk_size=300, chunk_overlap=0)
  45. else:
  46. text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=500, chunk_overlap=0)
  47. splits = text_splitter.split_documents(docs)
  48. chunks.extend(splits)
  49. return chunks
  50. doc = get_data_list(data_list=data_list, path=path, extension=extension, update=update)
  51. # Index
  52. docs = load_and_split(doc)
  53. return docs
  54. def create_ids(docs):
  55. # Create a dictionary to count occurrences of each page in each document
  56. page_counter = {}
  57. # List to store the resulting IDs
  58. document_ids = []
  59. # Generate IDs
  60. for doc in [docs[i].metadata for i in range(len(docs))]:
  61. source = doc['source']
  62. file_name = os.path.basename(source).split('.')[0]
  63. if "page" in doc.keys():
  64. page = doc['page']
  65. key = f"{source}_{page}"
  66. else:
  67. key = f"{source}"
  68. if key not in page_counter:
  69. page_counter[key] = 1
  70. else:
  71. page_counter[key] += 1
  72. if "page" in doc.keys():
  73. doc_id = f"{file_name} | page {page} | chunk {page_counter[key]}"
  74. else:
  75. doc_id = f"{file_name} | chunk {page_counter[key]}"
  76. document_ids.append(doc_id)
  77. return document_ids
  78. def get_document(data_list=None, path=None, extension=None, update=False):
  79. docs = read_and_split_files(data_list=data_list, path=path, extension=extension, update=update)
  80. document_ids = create_ids(docs)
  81. for doc in docs:
  82. doc.metadata['source'] = os.path.basename(doc.metadata['source'])
  83. # print(doc.metadata)
  84. # document_metadatas = [{'source': doc.metadata['source'], 'page': doc.metadata['page'], 'chunk': int(id.split("chunk ")[-1])} for doc, id in zip(docs, document_ids)]
  85. document_metadatas = []
  86. for doc, id in zip(docs, document_ids):
  87. chunk_number = int(id.split("chunk ")[-1])
  88. doc.metadata['chunk'] = chunk_number
  89. doc.metadata['extension'] = os.path.basename(doc.metadata['source']).split(".")[-1]
  90. document_metadatas.append(doc.metadata)
  91. documents = [docs.metadata['source'].split(".")[0] + docs.page_content for docs in docs]
  92. return document_ids, documents, document_metadatas
  93. def check_existed_data(supabase):
  94. response = supabase.table('documents').select("id, metadata").execute()
  95. existed_data = list(set([data['metadata']['source'] for data in response.data]))
  96. # existed_data = [(data['id'], data['metadata']['source']) for data in response.data]
  97. return existed_data
  98. class GetVectorStore(SupabaseVectorStore):
  99. def __init__(self, embeddings, supabase, table_name):
  100. super().__init__(embedding=embeddings, client=supabase, table_name=table_name, query_name="match_documents")
  101. def insert(self, documents, document_metadatas):
  102. self.add_texts(
  103. texts=documents,
  104. metadatas=document_metadatas,
  105. )
  106. def delete(self, file_list):
  107. for file_name in file_list:
  108. self._client.table(self.table_name).delete().eq('metadata->>source', file_name).execute()
  109. def update(self, documents, document_metadatas, update_existing_data=False):
  110. if not document_metadatas: # no new data
  111. return
  112. if update_existing_data:
  113. file_list = list(set(metadata['source'] for metadata in document_metadatas))
  114. self.delete(file_list)
  115. self.insert(documents, document_metadatas)
  116. if __name__ == "__main__":
  117. load_dotenv()
  118. supabase_url = os.environ.get("SUPABASE_URL")
  119. supabase_key = os.environ.get("SUPABASE_KEY")
  120. openai_api_key = os.getenv("OPENAI_API_KEY")
  121. openai.api_key = openai_api_key
  122. document_table = "documents"
  123. supabase: Client = create_client(supabase_url, supabase_key)
  124. embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
  125. # get vector store
  126. vector_store = GetVectorStore(embeddings, supabase, document_table)
  127. # update data (old + new / all new / all old)
  128. path = "/Documents"
  129. extension = "pdf"
  130. # file = None
  131. # file_list = ["溫室氣體排放量盤查作業指引113年版.pdf"]
  132. # file = [os.path.join(path, file) for file in file_list]
  133. file_list = glob.glob(os.path.join(path, "*"))
  134. print(file_list)
  135. update = True
  136. document_ids, documents, document_metadatas = get_document(data_list=file_list, path=path, extension=extension, update=update)
  137. vector_store.update(documents, document_metadatas, update_existing_data=update)
  138. # insert new data (all new)
  139. # vector_store.insert(documents, document_metadatas)
  140. # delete data
  141. # file_list = ["溫室氣體排放量盤查作業指引113年版.pdf"]
  142. # vector_store.delete(file_list)
  143. # get retriver
  144. # retriever = vector_store.as_retriever(search_kwargs={"k": 6})